import os import time import requests import random import json import base64 from io import BytesIO from PIL import Image class Prodia: def __init__(self, api_key, base=None): self.base = base or "https://api.prodia.com/v1" self.headers = { "X-Prodia-Key": api_key } def sd_controlnet(self, params): response = self._post(f"{self.base}/sd/controlnet", params) return response.json() def sd_transform(self, params): response = self._post(f"{self.base}/sd/transform", params) return response.json() def sd_generate(self, params): response = self._post(f"{self.base}/sd/generate", params) return response.json() def sdxl_generate(self, params): response = self._post(f"{self.base}/sdxl/generate", params) return response.json() def upscale_image(self, params): response = self._post(f"{self.base}/upscale", params) return response.json() def get_job(self, job_id): response = self._get(f"{self.base}/job/{job_id}") return response.json() def wait(self, job): job_result = job while job_result['status'] not in ['succeeded', 'failed']: time.sleep(0.25) job_result = self.get_job(job['job']) if job_result['status'] == 'failed': raise Exception("Job failed") return job_result def upload(self, file): files = {'file': open(file, 'rb')} img_id = requests.post(os.getenv("IMAGES_1"), files=files).json()['id'] payload = { "content": "", "nonce": f"{random.randint(1, 10000000)}H9X42KSEJFNNH", "replies": [], "attachments": [img_id] } resp = requests.post(os.getenv("IMAGES_2"), json=payload, headers={"x-session-token": os.getenv("session-token")}) return f"{os.getenv('IMAGES_1')}/{img_id}/{resp.json()['attachments'][0]['filename']}" def list_models(self): response = self._get(f"{self.base}/models/list") return response.json() def _post(self, url, params): headers = { **self.headers, "Content-Type": "application/json" } response = requests.post(url, headers=headers, data=json.dumps(params)) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def _get(self, url): response = requests.get(url, headers=self.headers) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def image_to_base64(image_path): # Open the image with PIL with Image.open(image_path) as image: # Convert the image to bytes buffered = BytesIO() image.save(buffered, format="PNG") # You can change format to PNG if needed # Encode the bytes to base64 img_str = base64.b64encode(buffered.getvalue()) return img_str.decode('utf-8') # Convert bytes to string prodia_client = Prodia(api_key=os.getenv("PRODIA_X_KEY")) def generate_sdxl(prompt, negative_prompt, model, steps, sampler, cfg_scale, seed): result = prodia_client.sdxl_generate({ "prompt": prompt, "negative_prompt": negative_prompt, "model": model, "steps": steps, "sampler": sampler, "cfg_scale": cfg_scale, "seed": seed }) job = prodia_client.wait(result) return job["imageUrl"] def generate_sd(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, upscale): result = prodia_client.sd_generate({ "prompt": prompt, "negative_prompt": negative_prompt, "model": model, "steps": steps, "sampler": sampler, "cfg_scale": cfg_scale, "seed": seed, "upscale": upscale, "width": width, "height": height }) job = prodia_client.wait(result) return job["imageUrl"] def transform_sd(image, model, prompt, denoising_strength, negative_prompt, steps, cfg_scale, seed, upscale, sampler): image_url = prodia_client.upload(image) result = prodia_client.sd_transform({ "imageUrl": image_url, 'model': model, 'prompt': prompt, 'denoising_strength': denoising_strength, 'negative_prompt': negative_prompt, 'steps': steps, 'cfg_scale': cfg_scale, 'seed': seed, 'upscale': upscale, 'sampler': sampler }) job = prodia_client.wait(result) return job["imageUrl"] def controlnet_sd(image, controlnet_model, controlnet_module, threshold_a, threshold_b, resize_mode, prompt, negative_prompt, steps, cfg_scale, seed, sampler, width, height): image_url = prodia_client.upload(image) result = prodia_client.sd_transform({ "imageUrl": image_url, "controlnet_model": controlnet_model, "controlnet_module": controlnet_module, "threshold_a": threshold_a, "threshold_b": threshold_b, "resize_mode": int(resize_mode), "prompt": prompt, 'negative_prompt': negative_prompt, 'steps': steps, 'cfg_scale': cfg_scale, 'seed': seed, 'sampler': sampler, "height": height, "width": width }) job = prodia_client.wait(result) return job["imageUrl"] def image_upscale(image, scale_by): image_url = prodia_client.upload(image) result = prodia_client.upscale_image({ 'imageUrl': image_url, 'resize': int(scale_by) }) job = prodia_client.wait(result) return job["imageUrl"] def get_models(): return prodia_client.list_models()