|
import os, sys
|
|
|
|
sys.path.insert(0, os.getcwd())
|
|
import argparse
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"base_model",
|
|
help="The model which use it to train the dreambooth model",
|
|
default="",
|
|
type=str,
|
|
)
|
|
parser.add_argument(
|
|
"db_model",
|
|
help="the dreambooth model you want to extract the locon",
|
|
default="",
|
|
type=str,
|
|
)
|
|
parser.add_argument(
|
|
"output_name", help="the output model", default="./out.pt", type=str
|
|
)
|
|
parser.add_argument(
|
|
"--is_v2",
|
|
help="Your base/db model is sd v2 or not",
|
|
default=False,
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--is_sdxl",
|
|
help="Your base/db model is sdxl or not",
|
|
default=False,
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--device",
|
|
help="Which device you want to use to extract the locon",
|
|
default="cpu",
|
|
type=str,
|
|
)
|
|
parser.add_argument(
|
|
"--mode",
|
|
help=(
|
|
'extraction mode, can be "full", "fixed", "threshold", "ratio", "quantile". '
|
|
'If not "fixed", network_dim and conv_dim will be ignored'
|
|
),
|
|
default="fixed",
|
|
type=str,
|
|
)
|
|
parser.add_argument(
|
|
"--safetensors",
|
|
help="use safetensors to save locon model",
|
|
default=False,
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--linear_dim",
|
|
help="network dim for linear layer in fixed mode",
|
|
default=1,
|
|
type=int,
|
|
)
|
|
parser.add_argument(
|
|
"--conv_dim",
|
|
help="network dim for conv layer in fixed mode",
|
|
default=1,
|
|
type=int,
|
|
)
|
|
parser.add_argument(
|
|
"--linear_threshold",
|
|
help="singular value threshold for linear layer in threshold mode",
|
|
default=0.0,
|
|
type=float,
|
|
)
|
|
parser.add_argument(
|
|
"--conv_threshold",
|
|
help="singular value threshold for conv layer in threshold mode",
|
|
default=0.0,
|
|
type=float,
|
|
)
|
|
parser.add_argument(
|
|
"--linear_ratio",
|
|
help="singular ratio for linear layer in ratio mode",
|
|
default=0.0,
|
|
type=float,
|
|
)
|
|
parser.add_argument(
|
|
"--conv_ratio",
|
|
help="singular ratio for conv layer in ratio mode",
|
|
default=0.0,
|
|
type=float,
|
|
)
|
|
parser.add_argument(
|
|
"--linear_quantile",
|
|
help="singular value quantile for linear layer quantile mode",
|
|
default=1.0,
|
|
type=float,
|
|
)
|
|
parser.add_argument(
|
|
"--conv_quantile",
|
|
help="singular value quantile for conv layer quantile mode",
|
|
default=1.0,
|
|
type=float,
|
|
)
|
|
parser.add_argument(
|
|
"--use_sparse_bias",
|
|
help="enable sparse bias",
|
|
default=False,
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--sparsity", help="sparsity for sparse bias", default=0.98, type=float
|
|
)
|
|
parser.add_argument(
|
|
"--disable_cp",
|
|
help="don't use cp decomposition",
|
|
default=False,
|
|
action="store_true",
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
ARGS = get_args()
|
|
|
|
|
|
from lycoris.utils import extract_diff
|
|
from lycoris.kohya.model_utils import load_models_from_stable_diffusion_checkpoint
|
|
from lycoris.kohya.sdxl_model_util import load_models_from_sdxl_checkpoint
|
|
|
|
import torch
|
|
from safetensors.torch import save_file
|
|
|
|
|
|
def main():
|
|
args = ARGS
|
|
if args.is_sdxl:
|
|
base = load_models_from_sdxl_checkpoint(None, args.base_model, args.device)
|
|
db = load_models_from_sdxl_checkpoint(None, args.db_model, args.device)
|
|
else:
|
|
base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model)
|
|
db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model)
|
|
|
|
linear_mode_param = {
|
|
"fixed": args.linear_dim,
|
|
"threshold": args.linear_threshold,
|
|
"ratio": args.linear_ratio,
|
|
"quantile": args.linear_quantile,
|
|
"full": None,
|
|
}[args.mode]
|
|
conv_mode_param = {
|
|
"fixed": args.conv_dim,
|
|
"threshold": args.conv_threshold,
|
|
"ratio": args.conv_ratio,
|
|
"quantile": args.conv_quantile,
|
|
"full": None,
|
|
}[args.mode]
|
|
|
|
if args.is_sdxl:
|
|
db_tes = [db[0], db[1]]
|
|
db_unet = db[3]
|
|
base_tes = [base[0], base[1]]
|
|
base_unet = base[3]
|
|
else:
|
|
db_tes = [db[0]]
|
|
db_unet = db[2]
|
|
base_tes = [base[0]]
|
|
base_unet = base[2]
|
|
|
|
state_dict = extract_diff(
|
|
base_tes,
|
|
db_tes,
|
|
base_unet,
|
|
db_unet,
|
|
args.mode,
|
|
linear_mode_param,
|
|
conv_mode_param,
|
|
args.device,
|
|
args.use_sparse_bias,
|
|
args.sparsity,
|
|
not args.disable_cp,
|
|
)
|
|
|
|
if args.safetensors:
|
|
save_file(state_dict, args.output_name)
|
|
else:
|
|
torch.save(state_dict, args.output_name)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |