File size: 7,470 Bytes
6d1366a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from isegm.utils import misc


class NormalizedFocalLossSigmoid(nn.Module):
    def __init__(self, axis=-1, alpha=0.25, gamma=2, max_mult=-1, eps=1e-12,
                 from_sigmoid=False, detach_delimeter=True,
                 batch_axis=0, weight=None, size_average=True,
                 ignore_label=-1):
        super(NormalizedFocalLossSigmoid, self).__init__()
        self._axis = axis
        self._alpha = alpha
        self._gamma = gamma
        self._ignore_label = ignore_label
        self._weight = weight if weight is not None else 1.0
        self._batch_axis = batch_axis

        self._from_logits = from_sigmoid
        self._eps = eps
        self._size_average = size_average
        self._detach_delimeter = detach_delimeter
        self._max_mult = max_mult
        self._k_sum = 0
        self._m_max = 0

    def forward(self, pred, label):
        one_hot = label > 0.5
        sample_weight = label != self._ignore_label

        if not self._from_logits:
            pred = torch.sigmoid(pred)

        alpha = torch.where(one_hot, self._alpha * sample_weight, (1 - self._alpha) * sample_weight)
        pt = torch.where(sample_weight, 1.0 - torch.abs(label - pred), torch.ones_like(pred))

        beta = (1 - pt) ** self._gamma

        sw_sum = torch.sum(sample_weight, dim=(-2, -1), keepdim=True)
        beta_sum = torch.sum(beta, dim=(-2, -1), keepdim=True)
        mult = sw_sum / (beta_sum + self._eps)
        if self._detach_delimeter:
            mult = mult.detach()
        beta = beta * mult
        if self._max_mult > 0:
            beta = torch.clamp_max(beta, self._max_mult)

        with torch.no_grad():
            ignore_area = torch.sum(label == self._ignore_label, dim=tuple(range(1, label.dim()))).cpu().numpy()
            sample_mult = torch.mean(mult, dim=tuple(range(1, mult.dim()))).cpu().numpy()
            if np.any(ignore_area == 0):
                self._k_sum = 0.9 * self._k_sum + 0.1 * sample_mult[ignore_area == 0].mean()

                beta_pmax, _ = torch.flatten(beta, start_dim=1).max(dim=1)
                beta_pmax = beta_pmax.mean().item()
                self._m_max = 0.8 * self._m_max + 0.2 * beta_pmax

        loss = -alpha * beta * torch.log(torch.min(pt + self._eps, torch.ones(1, dtype=torch.float).to(pt.device)))
        loss = self._weight * (loss * sample_weight)

        if self._size_average:
            bsum = torch.sum(sample_weight, dim=misc.get_dims_with_exclusion(sample_weight.dim(), self._batch_axis))
            loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis)) / (bsum + self._eps)
        else:
            loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis))

        return loss

    def log_states(self, sw, name, global_step):
        sw.add_scalar(tag=name + '_k', value=self._k_sum, global_step=global_step)
        sw.add_scalar(tag=name + '_m', value=self._m_max, global_step=global_step)


class FocalLoss(nn.Module):
    def __init__(self, axis=-1, alpha=0.25, gamma=2,
                 from_logits=False, batch_axis=0,
                 weight=None, num_class=None,
                 eps=1e-9, size_average=True, scale=1.0,
                 ignore_label=-1):
        super(FocalLoss, self).__init__()
        self._axis = axis
        self._alpha = alpha
        self._gamma = gamma
        self._ignore_label = ignore_label
        self._weight = weight if weight is not None else 1.0
        self._batch_axis = batch_axis

        self._scale = scale
        self._num_class = num_class
        self._from_logits = from_logits
        self._eps = eps
        self._size_average = size_average

    def forward(self, pred, label, sample_weight=None):
        one_hot = label > 0.5
        sample_weight = label != self._ignore_label

        if not self._from_logits:
            pred = torch.sigmoid(pred)

        alpha = torch.where(one_hot, self._alpha * sample_weight, (1 - self._alpha) * sample_weight)
        pt = torch.where(sample_weight, 1.0 - torch.abs(label - pred), torch.ones_like(pred))

        beta = (1 - pt) ** self._gamma

        loss = -alpha * beta * torch.log(torch.min(pt + self._eps, torch.ones(1, dtype=torch.float).to(pt.device)))
        loss = self._weight * (loss * sample_weight)

        if self._size_average:
            tsum = torch.sum(sample_weight, dim=misc.get_dims_with_exclusion(label.dim(), self._batch_axis))
            loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis)) / (tsum + self._eps)
        else:
            loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis))

        return self._scale * loss


class SoftIoU(nn.Module):
    def __init__(self, from_sigmoid=False, ignore_label=-1):
        super().__init__()
        self._from_sigmoid = from_sigmoid
        self._ignore_label = ignore_label

    def forward(self, pred, label):
        label = label.view(pred.size())
        sample_weight = label != self._ignore_label

        if not self._from_sigmoid:
            pred = torch.sigmoid(pred)

        loss = 1.0 - torch.sum(pred * label * sample_weight, dim=(1, 2, 3)) \
            / (torch.sum(torch.max(pred, label) * sample_weight, dim=(1, 2, 3)) + 1e-8)

        return loss


class SigmoidBinaryCrossEntropyLoss(nn.Module):
    def __init__(self, from_sigmoid=False, weight=None, batch_axis=0, ignore_label=-1):
        super(SigmoidBinaryCrossEntropyLoss, self).__init__()
        self._from_sigmoid = from_sigmoid
        self._ignore_label = ignore_label
        self._weight = weight if weight is not None else 1.0
        self._batch_axis = batch_axis

    def forward(self, pred, label):
        label = label.view(pred.size())
        sample_weight = label != self._ignore_label
        label = torch.where(sample_weight, label, torch.zeros_like(label))

        if not self._from_sigmoid:
            loss = torch.relu(pred) - pred * label + F.softplus(-torch.abs(pred))
        else:
            eps = 1e-12
            loss = -(torch.log(pred + eps) * label
                     + torch.log(1. - pred + eps) * (1. - label))

        loss = self._weight * (loss * sample_weight)
        return torch.mean(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis))


class BinaryDiceLoss(nn.Module):
    """ Dice Loss for binary segmentation
    """

    def forward(self, pred, label):
        batchsize = pred.size(0)

        # convert probability to binary label using maximum probability
        input_pred, input_label = pred.max(1)
        input_pred *= input_label.float()

        # convert to floats
        input_pred = input_pred.float()
        target_label = label.float()

        # convert to 1D
        input_pred = input_pred.view(batchsize, -1)
        target_label = target_label.view(batchsize, -1)

        # compute dice score
        intersect = torch.sum(input_pred * target_label, 1)
        input_area = torch.sum(input_pred * input_pred, 1)
        target_area = torch.sum(target_label * target_label, 1)

        sum = input_area + target_area
        epsilon = torch.tensor(1e-6)

        # batch dice loss and ignore dice loss where target area = 0
        batch_loss = torch.tensor(1.0) - (torch.tensor(2.0) * intersect + epsilon) / (sum + epsilon)
        loss = batch_loss.mean()

        return loss