File size: 12,205 Bytes
6d1366a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import torch
import torch.nn as nn

from functools import partial
from collections import OrderedDict
from .pos_embed import interpolate_pos_embed


class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer() if act_layer else nn.GELU()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    ''' Multi-head self-attention '''
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
        qkv = qkv.permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1,2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., mlp_drop=0., qkv_bias=False, attn_drop=0., 
        proj_drop=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.norm2 = norm_layer(dim)

        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, 
            proj_drop=proj_drop)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop)

    def forward(self, x):
        x = x + self.attn(self.norm1(x))
        x = x + self.mlp(self.norm2(x))
        return x


class PatchEmbed(nn.Module):
    """ 2D Image to Patch Embedding
    """
    def __init__(self, img_size=(224,224), patch_size=(16,16), in_chans=3, embed_dim=768, 
                 norm_layer=None, flatten=True):
        super().__init__()
        self.in_chans = in_chans
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]
        self.flatten = flatten

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        # B, C, H, W = x.shape
        # assert H % self.img_size[0] == 0 and W == self.img_size[1], \
        #     f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        # assert C == self.in_chans, \
        #     f"Input image chanel ({C}) doesn't match model ({self.in_chans})"
        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x


class VisionTransformer(nn.Module):
    """ Vision Transformer with support for global average pooling 
    """    
    def __init__(self, img_size=(224,224), patch_size=(16, 16), in_chans=3, num_classes=1000, embed_dim=768, 
                 depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, pos_drop_rate=0., attn_drop_rate=0., 
                 proj_drop_rate=0., norm_layer=None, act_layer=None, cls_feature_dim=None, global_pool=False, enable_gra=False):
        super().__init__()
        self.global_pool = global_pool
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim

        self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans,
            embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        self.pos_drop = nn.Dropout(p=pos_drop_rate)

        norm_layer = norm_layer if norm_layer else partial(nn.LayerNorm, eps=1e-6)
        self.blocks = nn.Sequential(*[
            Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, 
              attn_drop=attn_drop_rate, proj_drop=proj_drop_rate, norm_layer=norm_layer, 
              act_layer=act_layer)
            for _ in range(depth)])

        self.fc_norm = norm_layer(embed_dim)
        
        self.enable_gra = enable_gra
        if self.enable_gra:
            self.gra_embed = nn.Embedding(10, embed_dim)

        # feature representation for classification
        if cls_feature_dim:
            self.num_features = cls_feature_dim
            self.pre_logits = nn.Sequential(OrderedDict([
                ('fc', nn.Linear(embed_dim, cls_feature_dim)),
                ('act', nn.Tanh())
            ]))
        else:
            self.pre_logits = nn.Identity()

        # classification head(s)
        self.head = nn.Linear(self.num_features, num_classes)

        self.init_weights()

    def init_weights_from_pretrained(self, pretrained_path):
        if pretrained_path:
            checkpoint = torch.load(pretrained_path, map_location='cpu')
            print("Load pre-trained checkpoint from: %s" % pretrained_path)
            checkpoint_model = checkpoint['model']

            # interpolate position embedding
            interpolate_pos_embed(self, checkpoint_model)

            # load pre-trained model
            msg = self.load_state_dict(checkpoint_model, strict=False)
            print(msg)

    def init_weights(self):
        # initialize patch_embed like nn.Linear (instead of nn.Conv2d)
        w = self.patch_embed.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        # timm's trunc_normal_(std=.02) is effectively similar to normal_(std=0.02) 
        # as the default cutoff in trunc_normal_(std=.02) is too big (-2., 2.)
        nn.init.normal_(self.cls_token, std=.02)
        nn.init.normal_(self.pos_embed, std=.02)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            # we use xavier_uniform following official JAX ViT:
            nn.init.xavier_uniform_(m.weight)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def no_weight_decay(self):
        return {'pos_embed', 'cls_token', 'dist_token'}

    def shuffle(self, x):
        """
        in: x (B, N, C)
        out: x_shuffle (B, N, C), ids_restore (B, N)
        """
        B, N, C = x.shape
        noise = torch.rand(B, N, device=x.device)
        ids_shuffle = torch.argsort(noise, dim=1)
        ids_restore = torch.argsort(ids_shuffle, dim=1)

        x_shuffle = torch.gather(x, 1, index=ids_shuffle.unsqueeze(-1).repeat(1, 1, C))

        return x_shuffle, ids_restore

    def unshuffle(self, x, ids_restore):
        B, N, C = x.shape
        x_unshuffle = torch.gather(x, 1, index=ids_restore.unsqueeze(-1).repeat(1, 1, C))

        return x_unshuffle

    def split(self, x):
        B, N, C = x.shape
        num_tokens_per_split = 224 * 224
        num_splits = max(1, N // num_tokens_per_split)
        out = []
        for i in range(num_splits):
            if i == num_splits - 1:
                out.append(x[:, i*num_tokens_per_split:])
                return out
            out.append(x[:, i*num_tokens_per_split:(i+1)*num_tokens_per_split])

    # window split for finetuning on larger size (the pretraining size should be 224 x 224)
    def patchify(self, x):
        """
        in: (B, N, C)
        out: (B*win_w*win_h, N//(win_w*win_h), C)
        """
        B, N, C = x.shape
        grid_h, grid_w = self.patch_embed.grid_size
        win_h_grid = 224 // self.patch_embed.patch_size[0]
        win_w_grid = 224 // self.patch_embed.patch_size[1]
        win_h, win_w = grid_h // win_h_grid, grid_w // win_w_grid
        x = x.view(B, win_h, grid_h // win_h, win_w, grid_w // win_w, C)
        x_patchified = x.permute((0, 1, 3, 2, 4, 5)).contiguous()
        x_patchified = x_patchified.view(B * win_h * win_w, grid_h * grid_w // (win_h * win_w), C)

        return x_patchified

    # recover the window split
    def unpatchify(self, x):
        """
        in: (B*win_h*win_w, N//(win_h*win_w), C)
        out: (B, N, C)
        """
        B, N, C = x.shape
        grid_h, grid_w = self.patch_embed.grid_size
        win_h_grid = 224 // self.patch_embed.patch_size[0]
        win_w_grid = 224 // self.patch_embed.patch_size[1]
        win_h, win_w = grid_h // win_h_grid, grid_w // win_w_grid
        x = x.view(B // (win_h * win_w), win_h, win_w, grid_h // win_h, grid_w // win_w, C)
        x = x.permute((0, 1, 3, 2, 4, 5)).contiguous().view(B // (win_h * win_w), win_h * win_w * N, C)

        return x

    def forward_backbone(self, x, additional_features=None, gra=None, shuffle=False):
        x = self.patch_embed(x)
        if additional_features is not None:
            x += additional_features
        
        if self.enable_gra and gra is not None:
            gra_idx = torch.clamp(gra * 10 - 1, 0, 9).long()
            x += self.gra_embed(gra_idx).repeat(1, x.shape[1], 1)

        x = self.pos_drop(x + self.pos_embed[:, 1:])
        num_blocks = len(self.blocks)
        assert num_blocks % 4 == 0

        if shuffle:
            for i in range(1, num_blocks + 1):
                x, ids_restore = self.shuffle(x)
                x_split = self.split(x)
                x_split = [self.blocks[i-1](x_split[j]) for j in range(len(x_split))]
                x = torch.cat(x_split, dim=1)
                x = self.unshuffle(x, ids_restore)
        else:
            num_blocks_per_group = 6 if num_blocks == 12 else num_blocks // 4
            is_patchified = False
            for i in range(1, num_blocks + 1):
                if i % num_blocks_per_group:
                    if not is_patchified:
                        x = self.patchify(x)
                        is_patchified = True
                    else:
                        pass # do nothing
                else:
                    x = self.unpatchify(x)
                    is_patchified = False
                x = self.blocks[i-1](x)
        return x

    def forward(self, x):
        x = self.patch_embed(x)
        cls_token = self.cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_token, x), dim=1)
        x = self.pos_drop(x + self.pos_embed)
        x = self.blocks(x)

        if self.global_pool:
            x = x[:, 1:].mean(dim=1) # global pool without cls token
            x = self.fc_norm(x)
        else:
            x = self.fc_norm(x)
            x = x[:, 0]
        x = self.pre_logits(x)
        x = self.head(x)
        return x

def vit_base_patch16(**kwargs):
    model = VisionTransformer(
        patch_size=(16, 16), embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, **kwargs)
    return model

def vit_large_patch16(**kwargs):
    model = VisionTransformer(
        patch_size=(16, 16), embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, **kwargs)
    return model

def vit_huge_patch14(**kwargs):
    model = VisionTransformer(
        patch_size=(14,14), embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True, **kwargs)
    return model