import torch import torch.nn as nn from functools import partial from collections import OrderedDict from .pos_embed import interpolate_pos_embed import loralib as lora class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() if act_layer else nn.GELU() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): ''' Multi-head self-attention ''' def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 # self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.qkv = lora.MergedLinear(dim, dim * 3, r=8, enable_lora=[True, False, True], bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) qkv = qkv.permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1,2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., mlp_drop=0., qkv_bias=False, attn_drop=0., proj_drop=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.norm2 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding """ def __init__(self, img_size=(224,224), patch_size=(16,16), in_chans=3, embed_dim=768, norm_layer=None, flatten=True): super().__init__() self.in_chans = in_chans self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): # B, C, H, W = x.shape # assert H % self.img_size[0] == 0 and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." # assert C == self.in_chans, \ # f"Input image chanel ({C}) doesn't match model ({self.in_chans})" x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = self.norm(x) return x class VisionTransformer_lora(nn.Module): """ Vision Transformer with support for global average pooling """ def __init__(self, img_size=(224,224), patch_size=(16, 16), in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, pos_drop_rate=0., attn_drop_rate=0., proj_drop_rate=0., norm_layer=None, act_layer=None, cls_feature_dim=None, global_pool=False, enable_gra=False): super().__init__() self.global_pool = global_pool self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) # learnable positional embedding self.pos_drop = nn.Dropout(p=pos_drop_rate) norm_layer = norm_layer if norm_layer else partial(nn.LayerNorm, eps=1e-6) self.blocks = nn.Sequential(*[ Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, attn_drop=attn_drop_rate, proj_drop=proj_drop_rate, norm_layer=norm_layer, act_layer=act_layer) for _ in range(depth)]) self.fc_norm = norm_layer(embed_dim) self.enable_gra = enable_gra if self.enable_gra: self.gra_embed = nn.Embedding(10, embed_dim) # feature representation for classification if cls_feature_dim: self.num_features = cls_feature_dim self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(embed_dim, cls_feature_dim)), ('act', nn.Tanh()) ])) else: self.pre_logits = nn.Identity() # classification head(s) self.head = nn.Linear(self.num_features, num_classes) self.init_weights() def init_weights_from_pretrained(self, pretrained_path): if pretrained_path: checkpoint = torch.load(pretrained_path, map_location='cpu') print("Load pre-trained checkpoint from: %s" % pretrained_path) checkpoint_model = checkpoint['model'] # interpolate position embedding interpolate_pos_embed(self, checkpoint_model) # load pre-trained model msg = self.load_state_dict(checkpoint_model, strict=False) print(msg) def init_weights(self): # initialize patch_embed like nn.Linear (instead of nn.Conv2d) w = self.patch_embed.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # timm's trunc_normal_(std=.02) is effectively similar to normal_(std=0.02) # as the default cutoff in trunc_normal_(std=.02) is too big (-2., 2.) nn.init.normal_(self.cls_token, std=.02) nn.init.normal_(self.pos_embed, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): # we use xavier_uniform following official JAX ViT: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def no_weight_decay(self): return {'pos_embed', 'cls_token', 'dist_token'} def shuffle(self, x): """ in: x (B, N, C) out: x_shuffle (B, N, C), ids_restore (B, N) """ B, N, C = x.shape noise = torch.rand(B, N, device=x.device) ids_shuffle = torch.argsort(noise, dim=1) ids_restore = torch.argsort(ids_shuffle, dim=1) x_shuffle = torch.gather(x, 1, index=ids_shuffle.unsqueeze(-1).repeat(1, 1, C)) return x_shuffle, ids_restore def unshuffle(self, x, ids_restore): B, N, C = x.shape x_unshuffle = torch.gather(x, 1, index=ids_restore.unsqueeze(-1).repeat(1, 1, C)) return x_unshuffle def split(self, x): B, N, C = x.shape num_tokens_per_split = 224 * 224 num_splits = max(1, N // num_tokens_per_split) out = [] for i in range(num_splits): if i == num_splits - 1: out.append(x[:, i*num_tokens_per_split:]) return out out.append(x[:, i*num_tokens_per_split:(i+1)*num_tokens_per_split]) # window split for finetuning on larger size (the pretraining size should be 224 x 224) def patchify(self, x): """ in: (B, N, C) out: (B*win_w*win_h, N//(win_w*win_h), C) """ B, N, C = x.shape grid_h, grid_w = self.patch_embed.grid_size win_h_grid = 224 // self.patch_embed.patch_size[0] win_w_grid = 224 // self.patch_embed.patch_size[1] win_h, win_w = grid_h // win_h_grid, grid_w // win_w_grid x = x.view(B, win_h, grid_h // win_h, win_w, grid_w // win_w, C) x_patchified = x.permute((0, 1, 3, 2, 4, 5)).contiguous() x_patchified = x_patchified.view(B * win_h * win_w, grid_h * grid_w // (win_h * win_w), C) return x_patchified # recover the window split def unpatchify(self, x): """ in: (B*win_h*win_w, N//(win_h*win_w), C) out: (B, N, C) """ B, N, C = x.shape grid_h, grid_w = self.patch_embed.grid_size win_h_grid = 224 // self.patch_embed.patch_size[0] win_w_grid = 224 // self.patch_embed.patch_size[1] win_h, win_w = grid_h // win_h_grid, grid_w // win_w_grid x = x.view(B // (win_h * win_w), win_h, win_w, grid_h // win_h, grid_w // win_w, C) x = x.permute((0, 1, 3, 2, 4, 5)).contiguous().view(B // (win_h * win_w), win_h * win_w * N, C) return x def forward_backbone(self, x, additional_features=None, gra=None, shuffle=False): x = self.patch_embed(x) if additional_features is not None: x += additional_features if self.enable_gra and gra is not None: gra_idx = torch.clamp(gra * 10 - 1, 0, 9).long() x += self.gra_embed(gra_idx).repeat(1, x.shape[1], 1) x = self.pos_drop(x + self.pos_embed[:, 1:]) num_blocks = len(self.blocks) assert num_blocks % 4 == 0 if shuffle: for i in range(1, num_blocks + 1): x, ids_restore = self.shuffle(x) x_split = self.split(x) x_split = [self.blocks[i-1](x_split[j]) for j in range(len(x_split))] x = torch.cat(x_split, dim=1) x = self.unshuffle(x, ids_restore) else: num_blocks_per_group = 6 if num_blocks == 12 else num_blocks // 4 is_patchified = False for i in range(1, num_blocks + 1): if i % num_blocks_per_group: if not is_patchified: x = self.patchify(x) is_patchified = True else: pass # do nothing else: x = self.unpatchify(x) is_patchified = False x = self.blocks[i-1](x) return x def forward(self, x): x = self.patch_embed(x) cls_token = self.cls_token.expand(x.shape[0], -1, -1) x = torch.cat((cls_token, x), dim=1) x = self.pos_drop(x + self.pos_embed) x = self.blocks(x) if self.global_pool: x = x[:, 1:].mean(dim=1) # global pool without cls token x = self.fc_norm(x) else: x = self.fc_norm(x) x = x[:, 0] x = self.pre_logits(x) x = self.head(x) return x def vit_tiny_patch16(**kwargs): model = VisionTransformer( patch_size=(16, 16), embed_dim=160, depth=8, num_heads=4, mlp_ratio=4, qkv_bias=True, **kwargs) return model def vit_base_patch16(**kwargs): model = VisionTransformer( patch_size=(16, 16), embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, **kwargs) return model def vit_large_patch16(**kwargs): model = VisionTransformer( patch_size=(16, 16), embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, **kwargs) return model def vit_huge_patch14(**kwargs): model = VisionTransformer( patch_size=(14,14), embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True, **kwargs) return model