Spaces:
Sleeping
Sleeping
File size: 4,016 Bytes
da8d589 f83b1b7 32b2aaa da8d589 f83b1b7 da8d589 db7cbc6 da8d589 f83b1b7 da8d589 f83b1b7 da8d589 f83b1b7 da8d589 f83b1b7 da8d589 f83b1b7 da8d589 f83b1b7 da8d589 f83b1b7 da8d589 f83b1b7 da8d589 f83b1b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
from typing import List, Literal
from modules.devices import devices
from modules.repos_static.resemble_enhance.enhancer.enhancer import Enhancer
from modules.repos_static.resemble_enhance.enhancer.hparams import HParams
from modules.repos_static.resemble_enhance.inference import inference
import torch
from modules.utils.constants import MODELS_DIR
from pathlib import Path
from threading import Lock
resemble_enhance = None
lock = Lock()
def load_enhancer(device: torch.device):
global resemble_enhance
with lock:
if resemble_enhance is None:
resemble_enhance = ResembleEnhance(device)
resemble_enhance.load_model()
return resemble_enhance
class ResembleEnhance:
def __init__(self, device: torch.device):
self.device = device
self.enhancer: HParams = None
self.hparams: Enhancer = None
def load_model(self):
hparams = HParams.load(Path(MODELS_DIR) / "resemble-enhance")
enhancer = Enhancer(hparams)
state_dict = torch.load(
Path(MODELS_DIR) / "resemble-enhance" / "mp_rank_00_model_states.pt",
map_location=self.device,
)["module"]
enhancer.load_state_dict(state_dict)
enhancer.to(self.device).eval()
self.hparams = hparams
self.enhancer = enhancer
@torch.inference_mode()
def denoise(self, dwav, sr, device) -> tuple[torch.Tensor, int]:
assert self.enhancer is not None, "Model not loaded"
assert self.enhancer.denoiser is not None, "Denoiser not loaded"
enhancer = self.enhancer
return inference(model=enhancer.denoiser, dwav=dwav, sr=sr, device=device)
@torch.inference_mode()
def enhance(
self,
dwav,
sr,
device,
nfe=32,
solver: Literal["midpoint", "rk4", "euler"] = "midpoint",
lambd=0.5,
tau=0.5,
) -> tuple[torch.Tensor, int]:
assert 0 < nfe <= 128, f"nfe must be in (0, 128], got {nfe}"
assert solver in (
"midpoint",
"rk4",
"euler",
), f"solver must be in ('midpoint', 'rk4', 'euler'), got {solver}"
assert 0 <= lambd <= 1, f"lambd must be in [0, 1], got {lambd}"
assert 0 <= tau <= 1, f"tau must be in [0, 1], got {tau}"
assert self.enhancer is not None, "Model not loaded"
enhancer = self.enhancer
enhancer.configurate_(nfe=nfe, solver=solver, lambd=lambd, tau=tau)
return inference(model=enhancer, dwav=dwav, sr=sr, device=device)
if __name__ == "__main__":
import torchaudio
import gradio as gr
device = torch.device("cuda")
# def enhance(file):
# print(file)
# ench = load_enhancer(device)
# dwav, sr = torchaudio.load(file)
# dwav = dwav.mean(dim=0).to(device)
# enhanced, e_sr = ench.enhance(dwav, sr)
# return e_sr, enhanced.cpu().numpy()
# # 随便一个示例
# gr.Interface(
# fn=enhance, inputs=[gr.Audio(type="filepath")], outputs=[gr.Audio()]
# ).launch()
# load_chat_tts()
# ench = load_enhancer(device)
# devices.torch_gc()
# wav, sr = torchaudio.load("test.wav")
# print(wav.shape, type(wav), sr, type(sr))
# # exit()
# wav = wav.squeeze(0).cuda()
# print(wav.device)
# denoised, d_sr = ench.denoise(wav, sr)
# denoised = denoised.unsqueeze(0)
# print(denoised.shape)
# torchaudio.save("denoised.wav", denoised.cpu(), d_sr)
# for solver in ("midpoint", "rk4", "euler"):
# for lambd in (0.1, 0.5, 0.9):
# for tau in (0.1, 0.5, 0.9):
# enhanced, e_sr = ench.enhance(
# wav, sr, solver=solver, lambd=lambd, tau=tau, nfe=128
# )
# enhanced = enhanced.unsqueeze(0)
# print(enhanced.shape)
# torchaudio.save(
# f"enhanced_{solver}_{lambd}_{tau}.wav", enhanced.cpu(), e_sr
# )
|