File size: 4,016 Bytes
da8d589
f83b1b7
 
32b2aaa
 
 
da8d589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f83b1b7
 
da8d589
 
 
 
 
 
db7cbc6
da8d589
 
f83b1b7
da8d589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f83b1b7
da8d589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f83b1b7
da8d589
 
 
f83b1b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8d589
f83b1b7
 
da8d589
f83b1b7
da8d589
f83b1b7
da8d589
f83b1b7
 
 
 
da8d589
f83b1b7
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
from typing import List, Literal
from modules.devices import devices
from modules.repos_static.resemble_enhance.enhancer.enhancer import Enhancer
from modules.repos_static.resemble_enhance.enhancer.hparams import HParams
from modules.repos_static.resemble_enhance.inference import inference

import torch

from modules.utils.constants import MODELS_DIR
from pathlib import Path

from threading import Lock

resemble_enhance = None
lock = Lock()


def load_enhancer(device: torch.device):
    global resemble_enhance
    with lock:
        if resemble_enhance is None:
            resemble_enhance = ResembleEnhance(device)
            resemble_enhance.load_model()
    return resemble_enhance


class ResembleEnhance:
    def __init__(self, device: torch.device):
        self.device = device

        self.enhancer: HParams = None
        self.hparams: Enhancer = None

    def load_model(self):
        hparams = HParams.load(Path(MODELS_DIR) / "resemble-enhance")
        enhancer = Enhancer(hparams)
        state_dict = torch.load(
            Path(MODELS_DIR) / "resemble-enhance" / "mp_rank_00_model_states.pt",
            map_location=self.device,
        )["module"]
        enhancer.load_state_dict(state_dict)
        enhancer.to(self.device).eval()

        self.hparams = hparams
        self.enhancer = enhancer

    @torch.inference_mode()
    def denoise(self, dwav, sr, device) -> tuple[torch.Tensor, int]:
        assert self.enhancer is not None, "Model not loaded"
        assert self.enhancer.denoiser is not None, "Denoiser not loaded"
        enhancer = self.enhancer
        return inference(model=enhancer.denoiser, dwav=dwav, sr=sr, device=device)

    @torch.inference_mode()
    def enhance(
        self,
        dwav,
        sr,
        device,
        nfe=32,
        solver: Literal["midpoint", "rk4", "euler"] = "midpoint",
        lambd=0.5,
        tau=0.5,
    ) -> tuple[torch.Tensor, int]:
        assert 0 < nfe <= 128, f"nfe must be in (0, 128], got {nfe}"
        assert solver in (
            "midpoint",
            "rk4",
            "euler",
        ), f"solver must be in ('midpoint', 'rk4', 'euler'), got {solver}"
        assert 0 <= lambd <= 1, f"lambd must be in [0, 1], got {lambd}"
        assert 0 <= tau <= 1, f"tau must be in [0, 1], got {tau}"
        assert self.enhancer is not None, "Model not loaded"
        enhancer = self.enhancer
        enhancer.configurate_(nfe=nfe, solver=solver, lambd=lambd, tau=tau)
        return inference(model=enhancer, dwav=dwav, sr=sr, device=device)


if __name__ == "__main__":
    import torchaudio
    import gradio as gr

    device = torch.device("cuda")

    # def enhance(file):
    #     print(file)
    #     ench = load_enhancer(device)
    #     dwav, sr = torchaudio.load(file)
    #     dwav = dwav.mean(dim=0).to(device)
    #     enhanced, e_sr = ench.enhance(dwav, sr)
    #     return e_sr, enhanced.cpu().numpy()

    # # 随便一个示例
    # gr.Interface(
    #     fn=enhance, inputs=[gr.Audio(type="filepath")], outputs=[gr.Audio()]
    # ).launch()

    # load_chat_tts()

    # ench = load_enhancer(device)

    # devices.torch_gc()

    # wav, sr = torchaudio.load("test.wav")

    # print(wav.shape, type(wav), sr, type(sr))
    # # exit()

    # wav = wav.squeeze(0).cuda()

    # print(wav.device)

    # denoised, d_sr = ench.denoise(wav, sr)
    # denoised = denoised.unsqueeze(0)
    # print(denoised.shape)
    # torchaudio.save("denoised.wav", denoised.cpu(), d_sr)

    # for solver in ("midpoint", "rk4", "euler"):
    #     for lambd in (0.1, 0.5, 0.9):
    #         for tau in (0.1, 0.5, 0.9):
    #             enhanced, e_sr = ench.enhance(
    #                 wav, sr, solver=solver, lambd=lambd, tau=tau, nfe=128
    #             )
    #             enhanced = enhanced.unsqueeze(0)
    #             print(enhanced.shape)
    #             torchaudio.save(
    #                 f"enhanced_{solver}_{lambd}_{tau}.wav", enhanced.cpu(), e_sr
    #             )