zhzluke96
update
32b2aaa
raw
history blame
4.32 kB
# -*- coding: utf-8 -*-
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
import torch
import torch.nn.functional as F
from torch import nn
from ..hparams import HParams
def _make_stft_cfg(hop_length, win_length=None):
if win_length is None:
win_length = 4 * hop_length
n_fft = 2 ** (win_length - 1).bit_length()
return dict(n_fft=n_fft, hop_length=hop_length, win_length=win_length)
def get_stft_cfgs(hp: HParams):
assert hp.wav_rate == 44100, f"wav_rate must be 44100, got {hp.wav_rate}"
return [_make_stft_cfg(h) for h in (100, 256, 512)]
def stft(x, n_fft, hop_length, win_length, window):
dtype = x.dtype
x = torch.stft(x.float(), n_fft, hop_length, win_length, window, return_complex=True)
x = x.abs().to(dtype)
x = x.transpose(2, 1) # (b f t) -> (b t f)
return x
class SpectralConvergengeLoss(nn.Module):
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Args:
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
Tensor: Spectral convergence loss value.
"""
return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro")
class LogSTFTMagnitudeLoss(nn.Module):
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Args:
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
Tensor: Log STFT magnitude loss value.
"""
return F.l1_loss(torch.log1p(x_mag), torch.log1p(y_mag))
class STFTLoss(nn.Module):
def __init__(self, hp, stft_cfg: dict, window="hann_window"):
super().__init__()
self.hp = hp
self.stft_cfg = stft_cfg
self.spectral_convergenge_loss = SpectralConvergengeLoss()
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
self.register_buffer("window", getattr(torch, window)(stft_cfg["win_length"]), persistent=False)
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (B, T).
y (Tensor): Groundtruth signal (B, T).
Returns:
Tensor: Spectral convergence loss value.
Tensor: Log STFT magnitude loss value.
"""
stft_cfg = dict(self.stft_cfg)
x_mag = stft(x, **stft_cfg, window=self.window) # (b t) -> (b t f)
y_mag = stft(y, **stft_cfg, window=self.window)
sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
return dict(sc=sc_loss, mag=mag_loss)
class MRSTFTLoss(nn.Module):
def __init__(self, hp: HParams, window="hann_window"):
"""Initialize Multi resolution STFT loss module.
Args:
resolutions (list): List of (FFT size, hop size, window length).
window (str): Window function type.
"""
super().__init__()
stft_cfgs = get_stft_cfgs(hp)
self.stft_losses = nn.ModuleList()
self.hp = hp
for c in stft_cfgs:
self.stft_losses += [STFTLoss(hp, c, window=window)]
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (b t).
y (Tensor): Groundtruth signal (b t).
Returns:
Tensor: Multi resolution spectral convergence loss value.
Tensor: Multi resolution log STFT magnitude loss value.
"""
assert x.dim() == 2 and y.dim() == 2, f"(b t) is expected, but got {x.shape} and {y.shape}."
dtype = x.dtype
x = x.float()
y = y.float()
# Align length
x = x[..., : y.shape[-1]]
y = y[..., : x.shape[-1]]
losses = {}
for f in self.stft_losses:
d = f(x, y)
for k, v in d.items():
losses.setdefault(k, []).append(v)
for k, v in losses.items():
losses[k] = torch.stack(v, dim=0).mean().to(dtype)
return losses