Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# Copyright 2019 Tomoki Hayashi | |
# MIT License (https://opensource.org/licenses/MIT) | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from ..hparams import HParams | |
def _make_stft_cfg(hop_length, win_length=None): | |
if win_length is None: | |
win_length = 4 * hop_length | |
n_fft = 2 ** (win_length - 1).bit_length() | |
return dict(n_fft=n_fft, hop_length=hop_length, win_length=win_length) | |
def get_stft_cfgs(hp: HParams): | |
assert hp.wav_rate == 44100, f"wav_rate must be 44100, got {hp.wav_rate}" | |
return [_make_stft_cfg(h) for h in (100, 256, 512)] | |
def stft(x, n_fft, hop_length, win_length, window): | |
dtype = x.dtype | |
x = torch.stft(x.float(), n_fft, hop_length, win_length, window, return_complex=True) | |
x = x.abs().to(dtype) | |
x = x.transpose(2, 1) # (b f t) -> (b t f) | |
return x | |
class SpectralConvergengeLoss(nn.Module): | |
def forward(self, x_mag, y_mag): | |
"""Calculate forward propagation. | |
Args: | |
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). | |
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). | |
Returns: | |
Tensor: Spectral convergence loss value. | |
""" | |
return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro") | |
class LogSTFTMagnitudeLoss(nn.Module): | |
def forward(self, x_mag, y_mag): | |
"""Calculate forward propagation. | |
Args: | |
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). | |
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). | |
Returns: | |
Tensor: Log STFT magnitude loss value. | |
""" | |
return F.l1_loss(torch.log1p(x_mag), torch.log1p(y_mag)) | |
class STFTLoss(nn.Module): | |
def __init__(self, hp, stft_cfg: dict, window="hann_window"): | |
super().__init__() | |
self.hp = hp | |
self.stft_cfg = stft_cfg | |
self.spectral_convergenge_loss = SpectralConvergengeLoss() | |
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss() | |
self.register_buffer("window", getattr(torch, window)(stft_cfg["win_length"]), persistent=False) | |
def forward(self, x, y): | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Predicted signal (B, T). | |
y (Tensor): Groundtruth signal (B, T). | |
Returns: | |
Tensor: Spectral convergence loss value. | |
Tensor: Log STFT magnitude loss value. | |
""" | |
stft_cfg = dict(self.stft_cfg) | |
x_mag = stft(x, **stft_cfg, window=self.window) # (b t) -> (b t f) | |
y_mag = stft(y, **stft_cfg, window=self.window) | |
sc_loss = self.spectral_convergenge_loss(x_mag, y_mag) | |
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag) | |
return dict(sc=sc_loss, mag=mag_loss) | |
class MRSTFTLoss(nn.Module): | |
def __init__(self, hp: HParams, window="hann_window"): | |
"""Initialize Multi resolution STFT loss module. | |
Args: | |
resolutions (list): List of (FFT size, hop size, window length). | |
window (str): Window function type. | |
""" | |
super().__init__() | |
stft_cfgs = get_stft_cfgs(hp) | |
self.stft_losses = nn.ModuleList() | |
self.hp = hp | |
for c in stft_cfgs: | |
self.stft_losses += [STFTLoss(hp, c, window=window)] | |
def forward(self, x, y): | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Predicted signal (b t). | |
y (Tensor): Groundtruth signal (b t). | |
Returns: | |
Tensor: Multi resolution spectral convergence loss value. | |
Tensor: Multi resolution log STFT magnitude loss value. | |
""" | |
assert x.dim() == 2 and y.dim() == 2, f"(b t) is expected, but got {x.shape} and {y.shape}." | |
dtype = x.dtype | |
x = x.float() | |
y = y.float() | |
# Align length | |
x = x[..., : y.shape[-1]] | |
y = y[..., : x.shape[-1]] | |
losses = {} | |
for f in self.stft_losses: | |
d = f(x, y) | |
for k, v in d.items(): | |
losses.setdefault(k, []).append(v) | |
for k, v in losses.items(): | |
losses[k] = torch.stack(v, dim=0).mean().to(dtype) | |
return losses | |