Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor, nn | |
from torch.nn.utils.parametrizations import weight_norm | |
from ..hparams import HParams | |
from .lvcnet import LVCBlock | |
from .mrstft import MRSTFTLoss | |
class UnivNet(nn.Module): | |
def d_noise(self): | |
return 128 | |
def strides(self): | |
return [7, 5, 4, 3] | |
def dilations(self): | |
return [1, 3, 9, 27] | |
def nc(self): | |
return self.hp.univnet_nc | |
def scale_factor(self) -> int: | |
return self.hp.hop_size | |
def __init__(self, hp: HParams, d_input): | |
super().__init__() | |
self.d_input = d_input | |
self.hp = hp | |
self.blocks = nn.ModuleList( | |
[ | |
LVCBlock( | |
self.nc, | |
d_input, | |
stride=stride, | |
dilations=self.dilations, | |
cond_hop_length=hop_length, | |
kpnet_conv_size=3, | |
) | |
for stride, hop_length in zip(self.strides, np.cumprod(self.strides)) | |
] | |
) | |
self.conv_pre = weight_norm(nn.Conv1d(self.d_noise, self.nc, 7, padding=3, padding_mode="reflect")) | |
self.conv_post = nn.Sequential( | |
nn.LeakyReLU(0.2), | |
weight_norm(nn.Conv1d(self.nc, 1, 7, padding=3, padding_mode="reflect")), | |
nn.Tanh(), | |
) | |
self.mrstft = MRSTFTLoss(hp) | |
def eps(self): | |
return 1e-5 | |
def forward(self, x: Tensor, y: Tensor | None = None, npad=10): | |
""" | |
Args: | |
x: (b c t), acoustic features | |
y: (b t), waveform | |
Returns: | |
z: (b t), waveform | |
""" | |
assert x.ndim == 3, "x must be 3D tensor" | |
assert y is None or y.ndim == 2, "y must be 2D tensor" | |
assert x.shape[1] == self.d_input, f"x.shape[1] must be {self.d_input}, but got {x.shape}" | |
assert npad >= 0, "npad must be positive or zero" | |
x = F.pad(x, (0, npad), "constant", 0) | |
z = torch.randn(x.shape[0], self.d_noise, x.shape[2]).to(x) | |
z = self.conv_pre(z) # (b c t) | |
for block in self.blocks: | |
z = block(z, x) # (b c t) | |
z = self.conv_post(z) # (b 1 t) | |
z = z[..., : -self.scale_factor * npad] | |
z = z.squeeze(1) # (b t) | |
if y is not None: | |
self.losses = self.mrstft(z, y) | |
return z | |