Spaces:
Sleeping
Sleeping
import logging | |
import torch | |
from torch import Tensor, nn | |
logger = logging.getLogger(__name__) | |
class Normalizer(nn.Module): | |
def __init__(self, momentum=0.01, eps=1e-9): | |
super().__init__() | |
self.momentum = momentum | |
self.eps = eps | |
self.running_mean_unsafe: Tensor | |
self.running_var_unsafe: Tensor | |
self.register_buffer("running_mean_unsafe", torch.full([], torch.nan)) | |
self.register_buffer("running_var_unsafe", torch.full([], torch.nan)) | |
def started(self): | |
return not torch.isnan(self.running_mean_unsafe) | |
def running_mean(self): | |
if not self.started: | |
return torch.zeros_like(self.running_mean_unsafe) | |
return self.running_mean_unsafe | |
def running_std(self): | |
if not self.started: | |
return torch.ones_like(self.running_var_unsafe) | |
return (self.running_var_unsafe + self.eps).sqrt() | |
def _ema(self, a: Tensor, x: Tensor): | |
return (1 - self.momentum) * a + self.momentum * x | |
def update_(self, x): | |
if not self.started: | |
self.running_mean_unsafe = x.mean() | |
self.running_var_unsafe = x.var() | |
else: | |
self.running_mean_unsafe = self._ema(self.running_mean_unsafe, x.mean()) | |
self.running_var_unsafe = self._ema(self.running_var_unsafe, (x - self.running_mean).pow(2).mean()) | |
def forward(self, x: Tensor, update=True): | |
if self.training and update: | |
self.update_(x) | |
self.stats = dict(mean=self.running_mean.item(), std=self.running_std.item()) | |
x = (x - self.running_mean) / self.running_std | |
return x | |
def inverse(self, x: Tensor): | |
return x * self.running_std + self.running_mean | |