ChatTTS-Forge / modules /api /impl /openai_api.py
zhzluke96
update
01e655b
raw
history blame
3.34 kB
from fastapi import HTTPException, Body
from fastapi.responses import StreamingResponse
import io
from numpy import clip
import soundfile as sf
from pydantic import BaseModel, Field
from fastapi.responses import FileResponse
from modules.synthesize_audio import synthesize_audio
from modules.normalization import text_normalize
from modules import generate_audio as generate
from typing import Literal
import pyrubberband as pyrb
from modules.api import utils as api_utils
from modules.api.Api import APIManager
import numpy as np
class AudioSpeechRequest(BaseModel):
input: str # 需要合成的文本
model: str = "chattts-4w"
voice: str = "female2"
response_format: Literal["mp3", "wav"] = "mp3"
speed: int = Field(1, ge=1, le=10, description="Speed of the audio")
style: str = ""
# 是否开启batch合成,小于等于1表示不适用batch
# 开启batch合成会自动分割句子
batch_size: int = Field(1, ge=1, le=10, description="Batch size")
spliter_threshold: float = Field(
100, ge=10, le=1024, description="Threshold for sentence spliter"
)
async def openai_speech_api(
request: AudioSpeechRequest = Body(
..., description="JSON body with model, input text, and voice"
)
):
try:
model = request.model
input_text = request.input
voice = request.voice
style = request.style
response_format = request.response_format
batch_size = request.batch_size
spliter_threshold = request.spliter_threshold
speed = request.speed
speed = clip(speed, 0.1, 10)
if not input_text:
raise HTTPException(status_code=400, detail="Input text is required.")
# Normalize the text
text = text_normalize(input_text, is_end=True)
# Calculate speaker and style based on input voice
params = api_utils.calc_spk_style(spk=voice, style=style)
spk = params.get("spk", -1)
seed = params.get("seed", 42)
temperature = params.get("temperature", 0.3)
prompt1 = params.get("prompt1", "")
prompt2 = params.get("prompt2", "")
prefix = params.get("prefix", "")
# Generate audio
sample_rate, audio_data = synthesize_audio(
text,
temperature=temperature,
top_P=0.7,
top_K=20,
spk=spk,
infer_seed=seed,
batch_size=batch_size,
spliter_threshold=spliter_threshold,
prompt1=prompt1,
prompt2=prompt2,
prefix=prefix,
)
if speed != 1:
audio_data = pyrb.time_stretch(audio_data, sample_rate, speed)
# Convert audio data to wav format
buffer = io.BytesIO()
sf.write(buffer, audio_data, sample_rate, format="wav")
buffer.seek(0)
if response_format == "mp3":
# Convert wav to mp3
buffer = api_utils.wav_to_mp3(buffer)
return StreamingResponse(buffer, media_type="audio/mp3")
except Exception as e:
import logging
logging.exception(e)
raise HTTPException(status_code=500, detail=str(e))
def setup(api_manager: APIManager):
api_manager.post("/v1/openai/audio/speech", response_class=FileResponse)(
openai_speech_api
)