import os from typing import List, Literal from modules.devices import devices from modules.repos_static.resemble_enhance.enhancer.enhancer import Enhancer from modules.repos_static.resemble_enhance.enhancer.hparams import HParams from modules.repos_static.resemble_enhance.inference import inference import torch from modules.utils.constants import MODELS_DIR from pathlib import Path from threading import Lock resemble_enhance = None lock = Lock() def load_enhancer(device: torch.device): global resemble_enhance with lock: if resemble_enhance is None: resemble_enhance = ResembleEnhance(device) resemble_enhance.load_model() return resemble_enhance class ResembleEnhance: def __init__(self, device: torch.device): self.device = device self.enhancer: HParams = None self.hparams: Enhancer = None def load_model(self): hparams = HParams.load(Path(MODELS_DIR) / "resemble-enhance") enhancer = Enhancer(hparams) state_dict = torch.load( Path(MODELS_DIR) / "resemble-enhance" / "mp_rank_00_model_states.pt", map_location="cpu", )["module"] enhancer.load_state_dict(state_dict) enhancer.to(self.device).eval() self.hparams = hparams self.enhancer = enhancer @torch.inference_mode() def denoise(self, dwav, sr, device) -> tuple[torch.Tensor, int]: assert self.enhancer is not None, "Model not loaded" assert self.enhancer.denoiser is not None, "Denoiser not loaded" enhancer = self.enhancer return inference(model=enhancer.denoiser, dwav=dwav, sr=sr, device=device) @torch.inference_mode() def enhance( self, dwav, sr, device, nfe=32, solver: Literal["midpoint", "rk4", "euler"] = "midpoint", lambd=0.5, tau=0.5, ) -> tuple[torch.Tensor, int]: assert 0 < nfe <= 128, f"nfe must be in (0, 128], got {nfe}" assert solver in ( "midpoint", "rk4", "euler", ), f"solver must be in ('midpoint', 'rk4', 'euler'), got {solver}" assert 0 <= lambd <= 1, f"lambd must be in [0, 1], got {lambd}" assert 0 <= tau <= 1, f"tau must be in [0, 1], got {tau}" assert self.enhancer is not None, "Model not loaded" enhancer = self.enhancer enhancer.configurate_(nfe=nfe, solver=solver, lambd=lambd, tau=tau) return inference(model=enhancer, dwav=dwav, sr=sr, device=device) if __name__ == "__main__": import torchaudio import gradio as gr device = torch.device("cuda") # def enhance(file): # print(file) # ench = load_enhancer(device) # dwav, sr = torchaudio.load(file) # dwav = dwav.mean(dim=0).to(device) # enhanced, e_sr = ench.enhance(dwav, sr) # return e_sr, enhanced.cpu().numpy() # # 随便一个示例 # gr.Interface( # fn=enhance, inputs=[gr.Audio(type="filepath")], outputs=[gr.Audio()] # ).launch() # load_chat_tts() # ench = load_enhancer(device) # devices.torch_gc() # wav, sr = torchaudio.load("test.wav") # print(wav.shape, type(wav), sr, type(sr)) # # exit() # wav = wav.squeeze(0).cuda() # print(wav.device) # denoised, d_sr = ench.denoise(wav, sr) # denoised = denoised.unsqueeze(0) # print(denoised.shape) # torchaudio.save("denoised.wav", denoised.cpu(), d_sr) # for solver in ("midpoint", "rk4", "euler"): # for lambd in (0.1, 0.5, 0.9): # for tau in (0.1, 0.5, 0.9): # enhanced, e_sr = ench.enhance( # wav, sr, solver=solver, lambd=lambd, tau=tau, nfe=128 # ) # enhanced = enhanced.unsqueeze(0) # print(enhanced.shape) # torchaudio.save( # f"enhanced_{solver}_{lambd}_{tau}.wav", enhanced.cpu(), e_sr # )