import gradio as gr import pandas as pd import torch from modules.normalization import text_normalize from modules.webui import webui_utils from modules.hf import spaces podcast_default_case = [ [ 1, "female2", "你好,欢迎收听今天的播客内容。今天我们要聊的是中华料理。 [lbreak]", "podcast_p", ], [ 2, "Alice", "嗨,我特别期待这个话题!中华料理真的是博大精深。 [lbreak]", "podcast_p", ], [ 3, "Bob", "没错,中华料理有着几千年的历史,而且每个地区都有自己的特色菜。 [lbreak]", "podcast_p", ], [ 4, "female2", "那我们先从最有名的川菜开始吧。川菜以其麻辣著称,是很多人的最爱。 [lbreak]", "podcast_p", ], [ 5, "Alice", "对,我特别喜欢吃麻婆豆腐和辣子鸡。那种麻辣的感觉真是让人难以忘怀。 [lbreak]", "podcast_p", ], [ 6, "Bob", "除了川菜,粤菜也是很受欢迎的。粤菜讲究鲜美,像是白切鸡和蒸鱼都是经典。 [lbreak]", "podcast_p", ], [ 7, "female2", "对啊,粤菜的烹饪方式比较清淡,更注重食材本身的味道。 [lbreak]", "podcast_p", ], [ 8, "Alice", "还有北京的京菜,像北京烤鸭,那可是来北京必吃的美食。 [lbreak]", "podcast_p", ], [ 9, "Bob", "不仅如此,还有淮扬菜、湘菜、鲁菜等等,每个菜系都有其独特的风味。 [lbreak]", "podcast_p", ], [ 10, "female2", "对对对,像淮扬菜的狮子头,湘菜的剁椒鱼头,都是让人垂涎三尺的美味。 [lbreak]", "podcast_p", ], ] # NOTE: 因为 text_normalize 需要使用 tokenizer @torch.inference_mode() @spaces.GPU def merge_dataframe_to_ssml(msg, spk, style, df: pd.DataFrame): ssml = "" indent = " " * 2 for i, row in df.iterrows(): text = row.get("text") spk = row.get("speaker") style = row.get("style") ssml += f"{indent}\n" # 原封不动输出回去是为了触发 loadding 效果 return msg, spk, style, f"\n{ssml}" def create_ssml_podcast_tab(ssml_input: gr.Textbox, tabs1: gr.Tabs, tabs2: gr.Tabs): def get_spk_choices(): speakers, speaker_names = webui_utils.get_speaker_names() speaker_names = ["-1"] + speaker_names return speaker_names styles = ["*auto"] + [s.get("name") for s in webui_utils.get_styles()] with gr.Row(): with gr.Column(scale=1): with gr.Group(): spk_input_dropdown = gr.Dropdown( choices=get_spk_choices(), interactive=True, value="female : female2", show_label=False, ) style_input_dropdown = gr.Dropdown( choices=styles, # label="Choose Style", interactive=True, show_label=False, value="*auto", ) with gr.Group(): msg = gr.Textbox( lines=5, label="Message", placeholder="Type speaker message here" ) add = gr.Button("Add") undo = gr.Button("Undo") clear = gr.Button("Clear") with gr.Column(scale=5): with gr.Group(): gr.Markdown("📔Script") script_table = gr.DataFrame( headers=["index", "speaker", "text", "style"], datatype=["number", "str", "str", "str"], interactive=True, wrap=True, value=podcast_default_case, row_count=(0, "dynamic"), col_count=(4, "fixed"), ) send_to_ssml_btn = gr.Button("📩Send to SSML", variant="primary") def add_message(msg, spk, style, sheet: pd.DataFrame): if not msg: return "", sheet data = pd.DataFrame( { "index": [sheet.shape[0]], "speaker": [spk.split(" : ")[1].strip()], "text": [msg], "style": [style], }, ) # 如果只有一行 并且是空的 is_empty = sheet.empty or (sheet.shape[0] == 1 and "text" not in sheet.iloc[0]) if is_empty: sheet = data else: sheet = pd.concat( [ sheet, data, ], ignore_index=True, ) return "", sheet def undo_message(msg, spk, style, sheet: pd.DataFrame): if sheet.empty: return msg, spk, style, sheet data = sheet.iloc[-1] sheet = sheet.iloc[:-1] spk = "" for choice in get_spk_choices(): if choice.endswith(data["speaker"]) and " : " in choice: spk = choice break return data["text"], spk, data["style"], sheet def clear_message(): return "", pd.DataFrame( columns=["index", "speaker", "text", "style"], ) def send_to_ssml(msg, spk, style, sheet: pd.DataFrame): if sheet.empty: return gr.Error("Please add some text to the script table.") msg, spk, style, ssml = merge_dataframe_to_ssml(msg, spk, style, sheet) return [ msg, spk, style, gr.Textbox(value=ssml), gr.Tabs(selected="ssml"), gr.Tabs(selected="ssml.editor"), ] msg.submit( add_message, inputs=[msg, spk_input_dropdown, style_input_dropdown, script_table], outputs=[msg, script_table], ) add.click( add_message, inputs=[msg, spk_input_dropdown, style_input_dropdown, script_table], outputs=[msg, script_table], ) undo.click( undo_message, inputs=[msg, spk_input_dropdown, style_input_dropdown, script_table], outputs=[msg, spk_input_dropdown, style_input_dropdown, script_table], ) clear.click( clear_message, outputs=[msg, script_table], ) send_to_ssml_btn.click( send_to_ssml, inputs=[msg, spk_input_dropdown, style_input_dropdown, script_table], outputs=[ msg, spk_input_dropdown, style_input_dropdown, ssml_input, tabs1, tabs2, ], )