Spaces:
Paused
Paused
from fastapi import FastAPI | |
import uvicorn | |
import spaces | |
import torch | |
from pydantic import BaseModel | |
from transformers import RobertaTokenizer, RobertaForSequenceClassification | |
if torch.cuda.is_available(): | |
tokenizer = RobertaTokenizer.from_pretrained('Dzeniks/roberta-fact-check') | |
fc_model = RobertaForSequenceClassification.from_pretrained('Dzeniks/roberta-fact-check') | |
app = FastAPI() | |
# ------------------------------------------------------------------------ | |
class Item(BaseModel): | |
claim: str | |
evidence: str | |
def fact_checking(item: Item): | |
# # claim = item['claim'] | |
# # source = item['source'] | |
# claim = item.claim | |
# source = item.source | |
claim = item.claim | |
evidence = item.evidence | |
# claim = item['claim'] | |
# evidence = item['evidence'] | |
input = tokenizer.encode_plus(claim, evidence, return_tensors="pt") | |
fc_model.eval() | |
with torch.no_grad(): | |
outputs = fc_model(**input) | |
label = torch.argmax(outputs[0]).item() | |
return {"Verdict": label} | |
def greet_json(): | |
return {"Hello": "World!"} | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |
# if __name__ == "__main__": | |
# item = { | |
# "claim": "Albert Einstein work in the field of computer science.", | |
# "evidence": "Albert Einstein was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time.", | |
# } | |
# | |
# results = fact_checking(item) | |
# | |
# print(results) | |