File size: 1,499 Bytes
824b515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Based on https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/fe88a163f4661b4ddabba0751ff645e2e620746e/simple_inference.py
# import ipdb
# st = ipdb.set_trace
from importlib_resources import files
import torch
import torch.nn as nn
import numpy as np
from transformers import CLIPModel, CLIPProcessor
from PIL import Image
ASSETS_PATH = files("assets")
# ASSETS_PATH = "assets"

class MLPDiff(nn.Module):
    def __init__(self):
        super().__init__()
        self.layers = nn.Sequential(
            nn.Linear(768, 1024),
            nn.Dropout(0.2),
            nn.Linear(1024, 128),
            nn.Dropout(0.2),
            nn.Linear(128, 64),
            nn.Dropout(0.1),
            nn.Linear(64, 16),
            nn.Linear(16, 1),
        )


    def forward(self, embed):
        return self.layers(embed)


class AestheticScorerDiff(torch.nn.Module):
    def __init__(self, dtype):
        super().__init__()
        self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
        self.mlp = MLPDiff()
        state_dict = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth"))
        self.mlp.load_state_dict(state_dict)
        self.dtype = dtype
        self.eval()

    def __call__(self, images):
        device = next(self.parameters()).device
        embed = self.clip.get_image_features(pixel_values=images)
        embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True)
        return self.mlp(embed).squeeze(1)