VQAScore / app.py
zhiqiulin's picture
Update app.py
98d29ed verified
raw
history blame
1.34 kB
import gradio as gr
import spaces
import torch
torch.jit.script = lambda f: f # Avoid script error in lambda
from t2v_metrics import VQAScore, list_all_vqascore_models
# Global model variable, but do not initialize or move to CUDA here
model_pipe = VQAScore(model="clip-flant5-xl", device="cuda") # our recommended scoring model
@spaces.GPU
def generate(model_name, image, text):
print(list_all_vqascore_models()) # Debug: List available models
print("Image:", image) # Debug: Print image path
print("Text:", text) # Debug: Print text input
print("Generating!")
# Wrap the model call in a try-except block to capture and debug CUDA errors
try:
result = model_pipe(images=[image], texts=[text]) # Perform the model inference
except RuntimeError as e:
print(f"RuntimeError during model inference: {e}")
raise e
return result # Return the result
iface = gr.Interface(
fn=generate, # function to call
inputs=[gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs
outputs="number", # define the type of output
title="VQAScore", # title of the app
description="This model evaluates the similarity between an image and a text prompt."
).launch()