Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
torch.jit.script = lambda f: f # Avoid script error in lambda | |
from t2v_metrics import VQAScore, list_all_vqascore_models | |
def update_model(model_name): | |
return VQAScore(model=model_name, device="cuda") | |
# Use global variables for model pipe and current model name | |
global model_pipe, cur_model_name | |
cur_model_name = "clip-flant5-xl" | |
model_pipe = update_model(cur_model_name) | |
# Ensure GPU context manager is imported correctly (assuming spaces is a module you have) | |
#try: | |
#from spaces import GPU # i believe this is wrong, spaces package does not have "GPU" | |
#except ImportError: | |
# GPU = lambda duration: (lambda f: f) # Dummy decorator if spaces.GPU is not available | |
if torch.cuda.is_available(): | |
model_pipe.device = "cuda" | |
else: | |
print("CUDA is not available") | |
# a duration lower than 60 does not work, leave as is. | |
def generate(model_name, image, text): | |
global model_pipe, cur_model_name | |
if model_name != cur_model_name: | |
cur_model_name = model_name # Update the current model name | |
model_pipe = update_model(model_name) | |
print("Image:", image) # Debug: Print image path | |
print("Text:", text) # Debug: Print text input | |
print("Using model:", model_name) | |
try: | |
result = model_pipe(images=[image], texts=[text]).cpu()[0][0].item() # Perform the model inference | |
print("Result:", result) | |
except RuntimeError as e: | |
print(f"RuntimeError during model inference: {e}") | |
raise e | |
return result | |
def rank_images(model_name, images, text): | |
global model_pipe, cur_model_name | |
if model_name != cur_model_name: | |
cur_model_name = model_name # Update the current model name | |
model_pipe = update_model(model_name) | |
images = [image_tuple[0] for image_tuple in images] | |
print("Images:", images) # Debug: Print image paths | |
print("Text:", text) # Debug: Print text input | |
print("Using model:", model_name) | |
try: | |
results = model_pipe(images=images, texts=[text]).cpu()[:, 0].tolist() # Perform the model inference on all images | |
print("Initial results: should be imgs x texts", results) | |
ranked_results = sorted(zip(images, results), key=lambda x: x[1], reverse=True) # Rank results | |
ranked_images = [(img, f"Rank: {rank + 1} - Score: {score:.2f}") for rank, (img, score) in enumerate(ranked_results)] # Pair images with their scores and rank | |
print("Ranked Results:", ranked_results) | |
except RuntimeError as e: | |
print(f"RuntimeError during model inference: {e}") | |
raise e | |
return ranked_images | |
### EXAMPLES ### | |
example_imgs = ["0_imgs/DALLE3.png", | |
"0_imgs/DeepFloyd.jpg", | |
"0_imgs/Midjourney.jpg", | |
"0_imgs/SDXL.jpg"] | |
example_prompt0 = "Two dogs of different breeds playfully chasing around a tree" | |
example_prompt1 = "Two dogs of the same breed playing on the grass" | |
### | |
# # Create the first demo | |
# demo_vqascore = gr.Interface( | |
# fn=generate, # function to call | |
# inputs=[ | |
# gr.Dropdown(["clip-flant5-xxl", "clip-flant5-xl", ], label="Model Name"), | |
# gr.Image(type="filepath"), | |
# gr.Textbox(label="Prompt") | |
# ], # define the types of inputs | |
# examples=[ | |
# ["clip-flant5-xl", example_imgs[0], example_prompt0], | |
# ["clip-flant5-xl", example_imgs[0], example_prompt1], | |
# ], | |
# outputs="number", # define the type of output | |
# title="VQAScore", # title of the app | |
# description="This model evaluates the similarity between an image and a text prompt." | |
# ) | |
# # Create the second demo | |
# demo_vqascore_ranking = gr.Interface( | |
# fn=rank_images, # function to call | |
# inputs=[ | |
# gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), | |
# gr.Gallery(label="Generated Images"), | |
# gr.Textbox(label="Prompt") | |
# ], # define the types of inputs | |
# outputs=gr.Gallery(label="Ranked Images"), # define the type of output | |
# examples=[ | |
# ["clip-flant5-xl", [[img, ""] for img in example_imgs], example_prompt0], | |
# ["clip-flant5-xl", [[img, ""] for img in example_imgs], example_prompt1] | |
# ], | |
# title="VQAScore Ranking", # title of the app | |
# description="This model ranks a gallery of images based on their similarity to a text prompt.", | |
# allow_flagging='never' | |
# ) | |
# Custom component for loading examples | |
def load_example(model_name, images, prompt): | |
return model_name, images, prompt | |
# demo_vqascore = gr.Interface( | |
# fn=generate, # function to call | |
# inputs=[ | |
# gr.Dropdown(["clip-flant5-xxl", "clip-flant5-xl", ], label="Model Name"), | |
# gr.Image(type="filepath"), | |
# gr.Textbox(label="Prompt") | |
# ], # define the types of inputs | |
# examples=[ | |
# ["clip-flant5-xl", example_imgs[0], example_prompt0], | |
# ["clip-flant5-xl", example_imgs[0], example_prompt1], | |
# ], | |
# outputs="number", # define the type of output | |
# title="VQAScore", # title of the app | |
# description="This model evaluates the similarity between an image and a text prompt." | |
# ) | |
# Create the second demo: VQAScore Ranking | |
with gr.Blocks() as demo_vqascore_ranking: | |
# gr.Markdown("# VQAScore Ranking\nThis model ranks a gallery of images based on their similarity to a text prompt.") | |
gr.Markdown(""" | |
# VQAScore Ranking | |
This demo ranks a gallery of images by their VQAScores to an input text prompt. Try examples 1 and 2, or use your own images and prompts. | |
If you encounter errors, the model may not have loaded on the GPU properly. Retrying usually resolves this issue. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
model_dropdown = gr.Dropdown(["clip-flant5-xxl", "clip-flant5-xl"], value="clip-flant5-xxl", label="Model Name") | |
prompt = gr.Textbox(label="Prompt") | |
gallery = gr.Gallery(label="Input Image(s)", elem_id="input-gallery", columns=4, allow_preview=True) | |
rank_button = gr.Button("Submit") | |
with gr.Column(): | |
ranked_gallery = gr.Gallery(label="Output: Ranked Images with Scores", elem_id="ranked-gallery", columns=4, allow_preview=True) | |
rank_button.click(fn=rank_images, inputs=[model_dropdown, gallery, prompt], outputs=ranked_gallery) | |
example1_button = gr.Button("Load Example 1") | |
example2_button = gr.Button("Load Example 2") | |
example1_button.click(fn=lambda: load_example("clip-flant5-xxl", example_imgs, example_prompt0), inputs=[], outputs=[model_dropdown, gallery, prompt]) | |
example2_button.click(fn=lambda: load_example("clip-flant5-xxl", example_imgs, example_prompt1), inputs=[], outputs=[model_dropdown, gallery, prompt]) | |
# # Create the second demo | |
# with gr.Blocks() as demo_vqascore_ranking: | |
# gr.Markdown("# VQAScore Ranking\nThis model ranks a gallery of images based on their similarity to a text prompt.") | |
# model_dropdown = gr.Dropdown(["clip-flant5-xxl", "clip-flant5-xl"], value="clip-flant5-xxl", label="Model Name") | |
# gallery = gr.Gallery(label="Generated Images", elem_id="input-gallery", columns=4, allow_preview=True) | |
# prompt = gr.Textbox(label="Prompt") | |
# rank_button = gr.Button("Rank Images") | |
# ranked_gallery = gr.Gallery(label="Ranked Images with Scores", elem_id="ranked-gallery", columns=4, allow_preview=True) | |
# rank_button.click(fn=rank_images, inputs=[model_dropdown, gallery, prompt], outputs=ranked_gallery) | |
# # Custom example buttons | |
# example1_button = gr.Button("Load Example 1") | |
# example2_button = gr.Button("Load Example 2") | |
# example1_button.click(fn=lambda: load_example("clip-flant5-xxl", example_imgs, example_prompt0), inputs=[], outputs=[model_dropdown, gallery, prompt]) | |
# example2_button.click(fn=lambda: load_example("clip-flant5-xxl", example_imgs, example_prompt1), inputs=[], outputs=[model_dropdown, gallery, prompt]) | |
# # Layout to allow user to input their own data | |
# with gr.Row(): | |
# gr.Column([model_dropdown, gallery, prompt, rank_button]) | |
# gr.Column([example1_button, example2_button]) | |
# Launch the interface | |
demo_vqascore_ranking.queue() | |
demo_vqascore_ranking.launch(share=False) |