Spaces:
Sleeping
Sleeping
Zwea Htet
commited on
Commit
•
215cfd3
1
Parent(s):
b17ddeb
revert to previous version
Browse files- models/llamaCustom.py +4 -6
models/llamaCustom.py
CHANGED
@@ -5,8 +5,8 @@ from typing import Any, List, Mapping, Optional
|
|
5 |
|
6 |
import numpy as np
|
7 |
import openai
|
8 |
-
import streamlit as st
|
9 |
import pandas as pd
|
|
|
10 |
from dotenv import load_dotenv
|
11 |
from huggingface_hub import HfFileSystem
|
12 |
from langchain.llms.base import LLM
|
@@ -71,15 +71,13 @@ class CustomLLM(LLM):
|
|
71 |
def _llm_type(self) -> str:
|
72 |
return "custom"
|
73 |
|
74 |
-
@st.cache_resource
|
75 |
class LlamaCustom:
|
76 |
-
|
77 |
def __init__(self, model_name: str) -> None:
|
78 |
self.vector_index = self.initialize_index(model_name=model_name)
|
79 |
|
80 |
def initialize_index(self, model_name: str):
|
81 |
index_name = model_name.split("/")[-1]
|
82 |
-
|
83 |
file_path = f"./vectorStores/{index_name}"
|
84 |
if os.path.exists(path=file_path):
|
85 |
# rebuild storage context
|
@@ -103,7 +101,7 @@ class LlamaCustom:
|
|
103 |
service_context = ServiceContext.from_defaults(
|
104 |
llm_predictor=llm_predictor, prompt_helper=prompt_helper
|
105 |
)
|
106 |
-
|
107 |
# documents = prepare_data(r"./assets/regItems.json")
|
108 |
documents = SimpleDirectoryReader(input_dir="./assets/pdf").load_data()
|
109 |
|
@@ -123,4 +121,4 @@ class LlamaCustom:
|
|
123 |
print("query_str: ", query_str)
|
124 |
query_engine = self.vector_index.as_query_engine()
|
125 |
response = query_engine.query(query_str)
|
126 |
-
return str(response)
|
|
|
5 |
|
6 |
import numpy as np
|
7 |
import openai
|
|
|
8 |
import pandas as pd
|
9 |
+
import streamlit as st
|
10 |
from dotenv import load_dotenv
|
11 |
from huggingface_hub import HfFileSystem
|
12 |
from langchain.llms.base import LLM
|
|
|
71 |
def _llm_type(self) -> str:
|
72 |
return "custom"
|
73 |
|
|
|
74 |
class LlamaCustom:
|
|
|
75 |
def __init__(self, model_name: str) -> None:
|
76 |
self.vector_index = self.initialize_index(model_name=model_name)
|
77 |
|
78 |
def initialize_index(self, model_name: str):
|
79 |
index_name = model_name.split("/")[-1]
|
80 |
+
|
81 |
file_path = f"./vectorStores/{index_name}"
|
82 |
if os.path.exists(path=file_path):
|
83 |
# rebuild storage context
|
|
|
101 |
service_context = ServiceContext.from_defaults(
|
102 |
llm_predictor=llm_predictor, prompt_helper=prompt_helper
|
103 |
)
|
104 |
+
|
105 |
# documents = prepare_data(r"./assets/regItems.json")
|
106 |
documents = SimpleDirectoryReader(input_dir="./assets/pdf").load_data()
|
107 |
|
|
|
121 |
print("query_str: ", query_str)
|
122 |
query_engine = self.vector_index.as_query_engine()
|
123 |
response = query_engine.query(query_str)
|
124 |
+
return str(response)
|