Spaces:
Running
Running
File size: 6,501 Bytes
d05cebd dcfa286 d05cebd dcfa286 d05cebd dcfa286 d05cebd dcfa286 d05cebd dcfa286 d05cebd dcfa286 d05cebd dcfa286 d05cebd dcfa286 d05cebd dcfa286 d05cebd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import json
import gradio as gr
import pandas as pd
from css_html import custom_css
from text_content import CITATION_BUTTON_TEXT, CITATION_BUTTON_LABEL, ACKNOWLEDGEMENT_TEXT, NOTES_TEXT, HEAD_TEXT
from utils import (
AutoEvalColumn,
fields,
)
result_path = './results.json'
task_type = ["Pass@1 (Greedy Search N=1 Temperature=0.0)", "Pass@5 (Sampling Search N=5 Temperature=0.2)"]
cur_task = "Pass@1"
next_task = "Pass@5"
def data_convert(data_pass_k : list):
df = {"Model":{}}
for item in data_pass_k:
model_name = item["Model"]
domain = item["Domain"]
pass_at_k = item["Pass_at_k"]
if domain not in df: df[domain] = {}
assert model_name not in df[domain]
df[domain][model_name] = round(pass_at_k*100, 2)
df["Model"][model_name] = model_name
df = pd.DataFrame(df)
df = df.sort_values(by='Mean', ascending=False)
return df
with open(result_path, 'r') as f:
data = json.load(f)
df = data_convert(data["pass_1"])
df_next = data_convert(data["pass_5"])
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [
c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
]
TYPES_LITE = [
c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
]
def select_columns(df, columns):
always_here_cols = [
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
]
return filtered_df
def select_tasks(df, columns, df_next):
always_here_cols = [
AutoEvalColumn.model.name,
]
df,df_next = df_next,df
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
]
return df,filtered_df,df_next
demo = gr.Blocks(css=custom_css)
with demo:
with gr.Column():
gr.Markdown(
"""<div style="text-align: center;"><h1>DomainEval Leaderboard</h1></div>\
<br>\
""",
elem_classes="markdown-text",
)
gr.Markdown(HEAD_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.Column():
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
with gr.TabItem("π Evaluation Table", id=0):
with gr.Column():
with gr.Accordion("β¬ Pass@k", open=True):
shown_tasks = gr.Radio(
choices=[
c
for c in task_type
],
value=[
c
for c in task_type
if cur_task in c
][0] if any(cur_task in c for c in task_type) else None,
label="",
elem_id="task-select",
interactive=True,
)
with gr.Accordion("β¬ Domains", open=True):
shown_languages = gr.CheckboxGroup(
choices=[
c
for c in COLS
if c
not in [
AutoEvalColumn.model.name,
]
],
value=[
c
for c in COLS_LITE
if c
not in [
AutoEvalColumn.model.name,
]
],
label="",
elem_id="column-select",
interactive=True,
)
leaderboard_df = gr.components.Dataframe(
value=df[
[
AutoEvalColumn.model.name,
]
+ shown_languages.value
],
headers=COLS,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
)
hidden_leaderboard_df = gr.components.Dataframe(
value=df,
headers=COLS,
datatype=["str" for _ in range(len(COLS))],
visible=False,
)
leaderboard_next = gr.components.Dataframe(
value=df_next,
headers=COLS,
datatype=["str" for _ in range(len(COLS))],
visible=False,
)
shown_languages.change(
select_columns,
[hidden_leaderboard_df, shown_languages],
leaderboard_df,
)
shown_tasks.change(
select_tasks,
[hidden_leaderboard_df, shown_languages, leaderboard_next],
[hidden_leaderboard_df, leaderboard_df, leaderboard_next],
)
gr.Markdown(NOTES_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=10,
elem_id="citation-button",
show_copy_button=True,
)
with gr.Row():
with gr.Accordion("π Acknowledgement", open=False):
gr.Markdown(ACKNOWLEDGEMENT_TEXT)
demo.launch() |