File size: 6,501 Bytes
d05cebd
 
dcfa286
 
 
d05cebd
 
 
dcfa286
 
 
 
d05cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcfa286
 
 
d05cebd
 
 
 
 
 
 
 
 
dcfa286
 
d05cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcfa286
d05cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcfa286
d05cebd
 
 
 
 
 
 
 
 
 
 
 
dcfa286
 
d05cebd
 
 
 
 
dcfa286
d05cebd
 
 
 
 
dcfa286
d05cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import json

import gradio as gr
import pandas as pd

from css_html import custom_css
from text_content import CITATION_BUTTON_TEXT, CITATION_BUTTON_LABEL, ACKNOWLEDGEMENT_TEXT, NOTES_TEXT, HEAD_TEXT
from utils import (
    AutoEvalColumn,
    fields,
)

result_path = './results.json'
task_type = ["Pass@1 (Greedy Search N=1 Temperature=0.0)", "Pass@5 (Sampling Search N=5 Temperature=0.2)"]
cur_task = "Pass@1"
next_task = "Pass@5"
def data_convert(data_pass_k : list):
    df = {"Model":{}}
    for item in data_pass_k:
        model_name = item["Model"]
        domain = item["Domain"]
        pass_at_k = item["Pass_at_k"]
        if domain not in df: df[domain] = {}
        assert model_name not in df[domain]
        df[domain][model_name] = round(pass_at_k*100, 2)
        df["Model"][model_name] = model_name
    df = pd.DataFrame(df)
    df = df.sort_values(by='Mean', ascending=False)
    return df
with open(result_path, 'r') as f:
    data = json.load(f)
    df = data_convert(data["pass_1"])
    df_next = data_convert(data["pass_5"])
        
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [
    c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
]
TYPES_LITE = [
    c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
]
def select_columns(df, columns):
    always_here_cols = [
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns]
    ]
    return filtered_df

def select_tasks(df, columns, df_next):
    always_here_cols = [
        AutoEvalColumn.model.name,
    ]
    df,df_next = df_next,df
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns]
    ]
    return df,filtered_df,df_next

demo = gr.Blocks(css=custom_css)
with demo:
    with gr.Column():
        gr.Markdown(
            """<div style="text-align: center;"><h1>DomainEval Leaderboard</h1></div>\
            <br>\
""",
            elem_classes="markdown-text",
        )
        
        gr.Markdown(HEAD_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.Column():
            with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
                with gr.TabItem("πŸ” Evaluation Table", id=0):
                    with gr.Column():
                        with gr.Accordion("⏬ Pass@k", open=True):
                            shown_tasks = gr.Radio(
                                choices=[
                                    c
                                    for c in task_type
                                ],
                                value=[
                                    c
                                    for c in task_type
                                    if cur_task in c
                                ][0] if any(cur_task in c for c in task_type) else None,
                                label="",
                                elem_id="task-select",
                                interactive=True,
                            )
                        with gr.Accordion("⏬ Domains", open=True):
                            shown_languages = gr.CheckboxGroup(
                                choices=[
                                    c
                                    for c in COLS
                                    if c
                                    not in [
                                        AutoEvalColumn.model.name,
                                    ]
                                ],
                                value=[
                                    c
                                    for c in COLS_LITE
                                    if c
                                    not in [
                                        AutoEvalColumn.model.name,
                                    ]
                                ],
                                label="",
                                elem_id="column-select",
                                interactive=True,
                            )
                            
                    leaderboard_df = gr.components.Dataframe(
                        value=df[
                            [
                                AutoEvalColumn.model.name,
                            ]
                            + shown_languages.value
                        ],
                        headers=COLS,
                        datatype=TYPES,
                        elem_id="leaderboard-table",
                        interactive=False,
                    )

                    hidden_leaderboard_df = gr.components.Dataframe(
                        value=df,
                        headers=COLS,
                        datatype=["str" for _ in range(len(COLS))],
                        visible=False,
                    )
                    leaderboard_next = gr.components.Dataframe(
                        value=df_next,
                        headers=COLS,
                        datatype=["str" for _ in range(len(COLS))],
                        visible=False,
                    )
                    
                    shown_languages.change(
                        select_columns,
                        [hidden_leaderboard_df, shown_languages],
                        leaderboard_df,
                    )
                    
                    shown_tasks.change(
                        select_tasks,
                        [hidden_leaderboard_df, shown_languages, leaderboard_next],
                        [hidden_leaderboard_df, leaderboard_df, leaderboard_next],
                    )
                    
                    gr.Markdown(NOTES_TEXT, elem_classes="markdown-text")
                    
        with gr.Row():
            with gr.Accordion("πŸ“™ Citation", open=False):
                citation_button = gr.Textbox(
                    value=CITATION_BUTTON_TEXT,
                    label=CITATION_BUTTON_LABEL,
                    lines=10,
                    elem_id="citation-button",
                    show_copy_button=True,
                )
        
        with gr.Row():
            with gr.Accordion("πŸ™ Acknowledgement", open=False):
                gr.Markdown(ACKNOWLEDGEMENT_TEXT)

demo.launch()