Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,58 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
from tensorflow.keras import models
|
5 |
|
6 |
import tensorflow as tf
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# open categories.txt in read mode
|
9 |
categories = open("categories.txt", "r")
|
10 |
labels = categories.readline().split(";")
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
|
|
|
|
25 |
|
26 |
-
image = gr.inputs.Image(shape=(
|
27 |
label = gr.outputs.Label(num_top_classes=len(labels))
|
28 |
|
29 |
samples = ['samples/basking.jpg', 'samples/blacktip.jpg', 'samples/blue.jpg', 'samples/bull.jpg', 'samples/hammerhead.jpg',
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
from tensorflow.keras import models
|
4 |
|
5 |
import tensorflow as tf
|
6 |
|
7 |
+
models_name = [
|
8 |
+
"VGG16",
|
9 |
+
"mobilenet_v2",
|
10 |
+
"DenseNet"
|
11 |
+
]
|
12 |
+
|
13 |
# open categories.txt in read mode
|
14 |
categories = open("categories.txt", "r")
|
15 |
labels = categories.readline().split(";")
|
16 |
|
17 |
+
# create a radio
|
18 |
+
radio = gr.inputs.Radio(models_name, default="DenseNet", type="value")
|
19 |
+
|
20 |
+
def predict_image(image, model_name):
|
21 |
+
|
22 |
|
23 |
+
print("======================")
|
24 |
+
print(type(image))
|
25 |
+
print(type(model_name))
|
26 |
+
print("==========")
|
27 |
+
print(image)
|
28 |
+
print(model_name)
|
29 |
+
print("======================")
|
30 |
|
31 |
+
if model_name == "DenseNet":
|
32 |
+
image = np.array(image) / 255
|
33 |
+
image = np.expand_dims(image, axis=0)
|
34 |
+
|
35 |
+
model = "./models/" + model_name + "model.h5"
|
36 |
+
pred = model.predict(image)
|
37 |
+
|
38 |
+
pred = dict((labels[i], "%.2f" % pred[0][i]) for i in range(len(labels)))
|
39 |
+
else:
|
40 |
+
|
41 |
+
image = Image.fromarray(np.uint8(image)).convert('RGB')
|
42 |
+
classifier = TorchVisionClassifierInference(
|
43 |
+
model_path = "./models/" + model_name
|
44 |
+
)
|
45 |
|
46 |
+
pred = classifier.predict_image(img=image, return_str=False)
|
47 |
|
48 |
+
for key in pred.keys():
|
49 |
+
pred[key] = pred[key]/100
|
50 |
+
|
51 |
|
52 |
+
print(pred)
|
53 |
+
return pred
|
54 |
|
55 |
+
image = gr.inputs.Image(shape=(300, 300), label="Upload Your Image Here")
|
56 |
label = gr.outputs.Label(num_top_classes=len(labels))
|
57 |
|
58 |
samples = ['samples/basking.jpg', 'samples/blacktip.jpg', 'samples/blue.jpg', 'samples/bull.jpg', 'samples/hammerhead.jpg',
|