File size: 39,417 Bytes
4893ce0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 |
"""
Point Transformer - V3 Mode1
Pointcept detached version
Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""
import sys
from functools import partial
from addict import Dict
import math
import torch
import torch.nn as nn
import spconv.pytorch as spconv
import torch_scatter
from timm.models.layers import DropPath
from collections import OrderedDict
import numpy as np
import torch.nn.functional as F
try:
import flash_attn
except ImportError:
flash_attn = None
from model.serialization import encode
from huggingface_hub import PyTorchModelHubMixin
@torch.inference_mode()
def offset2bincount(offset):
return torch.diff(
offset, prepend=torch.tensor([0], device=offset.device, dtype=torch.long)
)
@torch.inference_mode()
def offset2batch(offset):
bincount = offset2bincount(offset)
return torch.arange(
len(bincount), device=offset.device, dtype=torch.long
).repeat_interleave(bincount)
@torch.inference_mode()
def batch2offset(batch):
return torch.cumsum(batch.bincount(), dim=0).long()
class Point(Dict):
"""
Point Structure of Pointcept
A Point (point cloud) in Pointcept is a dictionary that contains various properties of
a batched point cloud. The property with the following names have a specific definition
as follows:
- "coord": original coordinate of point cloud;
- "grid_coord": grid coordinate for specific grid size (related to GridSampling);
Point also support the following optional attributes:
- "offset": if not exist, initialized as batch size is 1;
- "batch": if not exist, initialized as batch size is 1;
- "feat": feature of point cloud, default input of model;
- "grid_size": Grid size of point cloud (related to GridSampling);
(related to Serialization)
- "serialized_depth": depth of serialization, 2 ** depth * grid_size describe the maximum of point cloud range;
- "serialized_code": a list of serialization codes;
- "serialized_order": a list of serialization order determined by code;
- "serialized_inverse": a list of inverse mapping determined by code;
(related to Sparsify: SpConv)
- "sparse_shape": Sparse shape for Sparse Conv Tensor;
- "sparse_conv_feat": SparseConvTensor init with information provide by Point;
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# If one of "offset" or "batch" do not exist, generate by the existing one
if "batch" not in self.keys() and "offset" in self.keys():
self["batch"] = offset2batch(self.offset)
elif "offset" not in self.keys() and "batch" in self.keys():
self["offset"] = batch2offset(self.batch)
def serialization(self, order="z", depth=None, shuffle_orders=False):
"""
Point Cloud Serialization
relay on ["grid_coord" or "coord" + "grid_size", "batch", "feat"]
"""
assert "batch" in self.keys()
if "grid_coord" not in self.keys():
# if you don't want to operate GridSampling in data augmentation,
# please add the following augmentation into your pipline:
# dict(type="Copy", keys_dict={"grid_size": 0.01}),
# (adjust `grid_size` to what your want)
assert {"grid_size", "coord"}.issubset(self.keys())
self["grid_coord"] = torch.div(
self.coord - self.coord.min(0)[0], self.grid_size, rounding_mode="trunc"
).int()
if depth is None:
# Adaptive measure the depth of serialization cube (length = 2 ^ depth)
depth = int(self.grid_coord.max()).bit_length()
self["serialized_depth"] = depth
# Maximum bit length for serialization code is 63 (int64)
assert depth * 3 + len(self.offset).bit_length() <= 63
# Here we follow OCNN and set the depth limitation to 16 (48bit) for the point position.
# Although depth is limited to less than 16, we can encode a 655.36^3 (2^16 * 0.01) meter^3
# cube with a grid size of 0.01 meter. We consider it is enough for the current stage.
# We can unlock the limitation by optimizing the z-order encoding function if necessary.
assert depth <= 16
# The serialization codes are arranged as following structures:
# [Order1 ([n]),
# Order2 ([n]),
# ...
# OrderN ([n])] (k, n)
code = [
encode(self.grid_coord, self.batch, depth, order=order_) for order_ in order
]
code = torch.stack(code)
order = torch.argsort(code)
inverse = torch.zeros_like(order).scatter_(
dim=1,
index=order,
src=torch.arange(0, code.shape[1], device=order.device).repeat(
code.shape[0], 1
),
)
if shuffle_orders:
perm = torch.randperm(code.shape[0])
code = code[perm]
order = order[perm]
inverse = inverse[perm]
self["serialized_code"] = code
self["serialized_order"] = order
self["serialized_inverse"] = inverse
def sparsify(self, pad=96):
"""
Point Cloud Serialization
Point cloud is sparse, here we use "sparsify" to specifically refer to
preparing "spconv.SparseConvTensor" for SpConv.
relay on ["grid_coord" or "coord" + "grid_size", "batch", "feat"]
pad: padding sparse for sparse shape.
"""
assert {"feat", "batch"}.issubset(self.keys())
if "grid_coord" not in self.keys():
# if you don't want to operate GridSampling in data augmentation,
# please add the following augmentation into your pipline:
# dict(type="Copy", keys_dict={"grid_size": 0.01}),
# (adjust `grid_size` to what your want)
assert {"grid_size", "coord"}.issubset(self.keys())
self["grid_coord"] = torch.div(
self.coord - self.coord.min(0)[0], self.grid_size, rounding_mode="trunc"
).int()
if "sparse_shape" in self.keys():
sparse_shape = self.sparse_shape
else:
sparse_shape = torch.add(
torch.max(self.grid_coord, dim=0).values, pad
).tolist()
sparse_conv_feat = spconv.SparseConvTensor(
features=self.feat,
indices=torch.cat(
[self.batch.unsqueeze(-1).int(), self.grid_coord.int()], dim=1
).contiguous(),
spatial_shape=sparse_shape,
batch_size=self.batch[-1].tolist() + 1,
)
self["sparse_shape"] = sparse_shape
self["sparse_conv_feat"] = sparse_conv_feat
class PointModule(nn.Module):
r"""PointModule
placeholder, all module subclass from this will take Point in PointSequential.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
class PointSequential(PointModule):
r"""A sequential container.
Modules will be added to it in the order they are passed in the constructor.
Alternatively, an ordered dict of modules can also be passed in.
"""
def __init__(self, *args, **kwargs):
super().__init__()
if len(args) == 1 and isinstance(args[0], OrderedDict):
for key, module in args[0].items():
self.add_module(key, module)
else:
for idx, module in enumerate(args):
self.add_module(str(idx), module)
for name, module in kwargs.items():
if sys.version_info < (3, 6):
raise ValueError("kwargs only supported in py36+")
if name in self._modules:
raise ValueError("name exists.")
self.add_module(name, module)
def __getitem__(self, idx):
if not (-len(self) <= idx < len(self)):
raise IndexError("index {} is out of range".format(idx))
if idx < 0:
idx += len(self)
it = iter(self._modules.values())
for i in range(idx):
next(it)
return next(it)
def __len__(self):
return len(self._modules)
def add(self, module, name=None):
if name is None:
name = str(len(self._modules))
if name in self._modules:
raise KeyError("name exists")
self.add_module(name, module)
def forward(self, input):
for k, module in self._modules.items():
# Point module
if isinstance(module, PointModule):
input = module(input)
# Spconv module
elif spconv.modules.is_spconv_module(module):
if isinstance(input, Point):
input.sparse_conv_feat = module(input.sparse_conv_feat)
input.feat = input.sparse_conv_feat.features
else:
input = module(input)
# PyTorch module
else:
if isinstance(input, Point):
input.feat = module(input.feat)
if "sparse_conv_feat" in input.keys():
input.sparse_conv_feat = input.sparse_conv_feat.replace_feature(
input.feat
)
elif isinstance(input, spconv.SparseConvTensor):
if input.indices.shape[0] != 0:
input = input.replace_feature(module(input.features))
else:
input = module(input)
return input
class PDNorm(PointModule):
def __init__(
self,
num_features,
norm_layer,
context_channels=256,
conditions=("ScanNet", "S3DIS", "Structured3D"),
decouple=True,
adaptive=False,
):
super().__init__()
self.conditions = conditions
self.decouple = decouple
self.adaptive = adaptive
if self.decouple:
self.norm = nn.ModuleList([norm_layer(num_features) for _ in conditions])
else:
self.norm = norm_layer
if self.adaptive:
self.modulation = nn.Sequential(
nn.SiLU(), nn.Linear(context_channels, 2 * num_features, bias=True)
)
def forward(self, point):
assert {"feat", "condition"}.issubset(point.keys())
if isinstance(point.condition, str):
condition = point.condition
else:
condition = point.condition[0]
if self.decouple:
assert condition in self.conditions
norm = self.norm[self.conditions.index(condition)]
else:
norm = self.norm
point.feat = norm(point.feat)
if self.adaptive:
assert "context" in point.keys()
shift, scale = self.modulation(point.context).chunk(2, dim=1)
point.feat = point.feat * (1.0 + scale) + shift
return point
class RPE(torch.nn.Module):
def __init__(self, patch_size, num_heads):
super().__init__()
self.patch_size = patch_size
self.num_heads = num_heads
self.pos_bnd = int((4 * patch_size) ** (1 / 3) * 2)
self.rpe_num = 2 * self.pos_bnd + 1
self.rpe_table = torch.nn.Parameter(torch.zeros(3 * self.rpe_num, num_heads))
torch.nn.init.trunc_normal_(self.rpe_table, std=0.02)
def forward(self, coord):
idx = (
coord.clamp(-self.pos_bnd, self.pos_bnd) # clamp into bnd
+ self.pos_bnd # relative position to positive index
+ torch.arange(3, device=coord.device) * self.rpe_num # x, y, z stride
)
out = self.rpe_table.index_select(0, idx.reshape(-1))
out = out.view(idx.shape + (-1,)).sum(3)
out = out.permute(0, 3, 1, 2) # (N, K, K, H) -> (N, H, K, K)
return out
class SerializedAttention(PointModule):
def __init__(
self,
channels,
num_heads,
patch_size,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
order_index=0,
enable_rpe=False,
enable_flash=True,
upcast_attention=True,
upcast_softmax=True,
):
super().__init__()
assert channels % num_heads == 0
self.channels = channels
self.num_heads = num_heads
self.scale = qk_scale or (channels // num_heads) ** -0.5
self.order_index = order_index
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.enable_rpe = enable_rpe
self.enable_flash = enable_flash
if enable_flash:
assert (
enable_rpe is False
), "Set enable_rpe to False when enable Flash Attention"
assert (
upcast_attention is False
), "Set upcast_attention to False when enable Flash Attention"
assert (
upcast_softmax is False
), "Set upcast_softmax to False when enable Flash Attention"
#assert flash_attn is not None, "Make sure flash_attn is installed."
self.patch_size = patch_size
self.attn_drop = attn_drop
else:
# when disable flash attention, we still don't want to use mask
# consequently, patch size will auto set to the
# min number of patch_size_max and number of points
self.patch_size_max = patch_size
self.patch_size = 0
self.attn_drop = torch.nn.Dropout(attn_drop)
self.qkv = torch.nn.Linear(channels, channels * 3, bias=qkv_bias)
self.proj = torch.nn.Linear(channels, channels)
self.proj_drop = torch.nn.Dropout(proj_drop)
self.softmax = torch.nn.Softmax(dim=-1)
self.rpe = RPE(patch_size, num_heads) if self.enable_rpe else None
@torch.no_grad()
def get_rel_pos(self, point, order):
K = self.patch_size
rel_pos_key = f"rel_pos_{self.order_index}"
if rel_pos_key not in point.keys():
grid_coord = point.grid_coord[order]
grid_coord = grid_coord.reshape(-1, K, 3)
point[rel_pos_key] = grid_coord.unsqueeze(2) - grid_coord.unsqueeze(1)
return point[rel_pos_key]
@torch.no_grad()
def get_padding_and_inverse(self, point):
pad_key = "pad"
unpad_key = "unpad"
cu_seqlens_key = "cu_seqlens_key"
if (
pad_key not in point.keys()
or unpad_key not in point.keys()
or cu_seqlens_key not in point.keys()
):
offset = point.offset
bincount = offset2bincount(offset)
bincount_pad = (
torch.div(
bincount + self.patch_size - 1,
self.patch_size,
rounding_mode="trunc",
)
* self.patch_size
)
# only pad point when num of points larger than patch_size
mask_pad = bincount > self.patch_size
bincount_pad = ~mask_pad * bincount + mask_pad * bincount_pad
_offset = nn.functional.pad(offset, (1, 0))
_offset_pad = nn.functional.pad(torch.cumsum(bincount_pad, dim=0), (1, 0))
pad = torch.arange(_offset_pad[-1], device=offset.device)
unpad = torch.arange(_offset[-1], device=offset.device)
cu_seqlens = []
for i in range(len(offset)):
unpad[_offset[i] : _offset[i + 1]] += _offset_pad[i] - _offset[i]
if bincount[i] != bincount_pad[i]:
pad[
_offset_pad[i + 1]
- self.patch_size
+ (bincount[i] % self.patch_size) : _offset_pad[i + 1]
] = pad[
_offset_pad[i + 1]
- 2 * self.patch_size
+ (bincount[i] % self.patch_size) : _offset_pad[i + 1]
- self.patch_size
]
pad[_offset_pad[i] : _offset_pad[i + 1]] -= _offset_pad[i] - _offset[i]
cu_seqlens.append(
torch.arange(
_offset_pad[i],
_offset_pad[i + 1],
step=self.patch_size,
dtype=torch.int32,
device=offset.device,
)
)
point[pad_key] = pad
point[unpad_key] = unpad
point[cu_seqlens_key] = nn.functional.pad(
torch.concat(cu_seqlens), (0, 1), value=_offset_pad[-1]
)
return point[pad_key], point[unpad_key], point[cu_seqlens_key]
def forward(self, point):
if not self.enable_flash:
self.patch_size = min(
offset2bincount(point.offset).min().tolist(), self.patch_size_max
)
H = self.num_heads
K = self.patch_size
C = self.channels
pad, unpad, cu_seqlens = self.get_padding_and_inverse(point)
order = point.serialized_order[self.order_index][pad]
inverse = unpad[point.serialized_inverse[self.order_index]]
# padding and reshape feat and batch for serialized point patch
qkv = self.qkv(point.feat)[order]
if not self.enable_flash:
# encode and reshape qkv: (N', K, 3, H, C') => (3, N', H, K, C')
q, k, v = (
qkv.reshape(-1, K, 3, H, C // H).permute(2, 0, 3, 1, 4).unbind(dim=0)
)
# attn
if self.upcast_attention:
q = q.float()
k = k.float()
attn = (q * self.scale) @ k.transpose(-2, -1) # (N', H, K, K)
if self.enable_rpe:
attn = attn + self.rpe(self.get_rel_pos(point, order))
if self.upcast_softmax:
attn = attn.float()
attn = self.softmax(attn)
attn = self.attn_drop(attn).to(qkv.dtype)
feat = (attn @ v).transpose(1, 2).reshape(-1, C)
else:
feat = flash_attn.flash_attn_varlen_qkvpacked_func(
qkv.half().reshape(-1, 3, H, C // H),
cu_seqlens,
max_seqlen=self.patch_size,
dropout_p=self.attn_drop if self.training else 0,
softmax_scale=self.scale,
).reshape(-1, C)
feat = feat.to(qkv.dtype)
feat = feat[inverse]
# ffn
feat = self.proj(feat)
feat = self.proj_drop(feat)
point.feat = feat
return point
class MLP(nn.Module):
def __init__(
self,
in_channels,
hidden_channels=None,
out_channels=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_channels = out_channels or in_channels
hidden_channels = hidden_channels or in_channels
self.fc1 = nn.Linear(in_channels, hidden_channels)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_channels, out_channels)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Block(PointModule):
def __init__(
self,
channels,
num_heads,
patch_size=48,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
drop_path=0.0,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
pre_norm=True,
order_index=0,
cpe_indice_key=None,
enable_rpe=False,
enable_flash=True,
upcast_attention=True,
upcast_softmax=True,
):
super().__init__()
self.channels = channels
self.pre_norm = pre_norm
self.cpe = PointSequential(
spconv.SubMConv3d(
channels,
channels,
kernel_size=3,
bias=True,
indice_key=cpe_indice_key,
),
nn.Linear(channels, channels),
norm_layer(channels),
)
self.norm1 = PointSequential(norm_layer(channels))
self.attn = SerializedAttention(
channels=channels,
patch_size=patch_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=proj_drop,
order_index=order_index,
enable_rpe=enable_rpe,
enable_flash=enable_flash,
upcast_attention=upcast_attention,
upcast_softmax=upcast_softmax,
)
self.norm2 = PointSequential(norm_layer(channels))
self.mlp = PointSequential(
MLP(
in_channels=channels,
hidden_channels=int(channels * mlp_ratio),
out_channels=channels,
act_layer=act_layer,
drop=proj_drop,
)
)
self.drop_path = PointSequential(
DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
)
def forward(self, point: Point):
shortcut = point.feat
point = self.cpe(point)
point.feat = shortcut + point.feat
shortcut = point.feat
if self.pre_norm:
point = self.norm1(point)
point = self.drop_path(self.attn(point))
point.feat = shortcut + point.feat
if not self.pre_norm:
point = self.norm1(point)
shortcut = point.feat
if self.pre_norm:
point = self.norm2(point)
point = self.drop_path(self.mlp(point))
point.feat = shortcut + point.feat
if not self.pre_norm:
point = self.norm2(point)
point.sparse_conv_feat = point.sparse_conv_feat.replace_feature(point.feat)
#point.sparse_conv_feat.replace_feature(point.feat) old version
return point
class SerializedPooling(PointModule):
def __init__(
self,
in_channels,
out_channels,
stride=2,
norm_layer=None,
act_layer=None,
reduce="max",
shuffle_orders=True,
traceable=True, # record parent and cluster
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
assert stride == 2 ** (math.ceil(stride) - 1).bit_length() # 2, 4, 8
# TODO: add support to grid pool (any stride)
self.stride = stride
assert reduce in ["sum", "mean", "min", "max"]
self.reduce = reduce
self.shuffle_orders = shuffle_orders
self.traceable = traceable
self.proj = nn.Linear(in_channels, out_channels)
if norm_layer is not None:
self.norm = PointSequential(norm_layer(out_channels))
if act_layer is not None:
self.act = PointSequential(act_layer())
def forward(self, point: Point):
pooling_depth = (math.ceil(self.stride) - 1).bit_length()
if pooling_depth > point.serialized_depth:
pooling_depth = 0
assert {
"serialized_code",
"serialized_order",
"serialized_inverse",
"serialized_depth",
}.issubset(
point.keys()
), "Run point.serialization() point cloud before SerializedPooling"
code = point.serialized_code >> pooling_depth * 3 # if pooling depth=1, right shift 3 i.e. divide by 8
# this is divide by 2^(pooling_depth+2) i.e. 4*stride
# this is because it's 3d, shift index by 8 means half
code_, cluster, counts = torch.unique(
code[0],
sorted=True,
return_inverse=True,
return_counts=True,
)
# indices of point sorted by cluster, for torch_scatter.segment_csr
_, indices = torch.sort(cluster)
# index pointer for sorted point, for torch_scatter.segment_csr
idx_ptr = torch.cat([counts.new_zeros(1), torch.cumsum(counts, dim=0)])
# head_indices of each cluster, for reduce attr e.g. code, batch
head_indices = indices[idx_ptr[:-1]]
# generate down code, order, inverse
code = code[:, head_indices] # these are the unique entries
order = torch.argsort(code)
inverse = torch.zeros_like(order).scatter_(
dim=1,
index=order,
src=torch.arange(0, code.shape[1], device=order.device).repeat(
code.shape[0], 1
),
)
if self.shuffle_orders:
perm = torch.randperm(code.shape[0])
code = code[perm]
order = order[perm]
inverse = inverse[perm]
# coordinate is also halved - the space is sparser
# collect information
point_dict = Dict(
feat=torch_scatter.segment_csr(
self.proj(point.feat)[indices], idx_ptr, reduce=self.reduce
),
coord=torch_scatter.segment_csr(
point.coord[indices], idx_ptr, reduce="mean"
),
grid_coord=point.grid_coord[head_indices] >> pooling_depth,
serialized_code=code,
serialized_order=order,
serialized_inverse=inverse,
serialized_depth=point.serialized_depth - pooling_depth,
batch=point.batch[head_indices],
)
if "condition" in point.keys():
point_dict["condition"] = point.condition
if "context" in point.keys():
point_dict["context"] = point.context
if self.traceable:
point_dict["pooling_inverse"] = cluster
point_dict["pooling_parent"] = point
point = Point(point_dict)
if self.norm is not None:
point = self.norm(point)
if self.act is not None:
point = self.act(point)
point.sparsify()
return point
class SerializedUnpooling(PointModule):
def __init__(
self,
in_channels,
skip_channels,
out_channels,
norm_layer=None,
act_layer=None,
traceable=False, # record parent and cluster
):
super().__init__()
self.proj = PointSequential(nn.Linear(in_channels, out_channels))
self.proj_skip = PointSequential(nn.Linear(skip_channels, out_channels))
if norm_layer is not None:
self.proj.add(norm_layer(out_channels))
self.proj_skip.add(norm_layer(out_channels))
if act_layer is not None:
self.proj.add(act_layer())
self.proj_skip.add(act_layer())
self.traceable = traceable
def forward(self, point):
assert "pooling_parent" in point.keys()
assert "pooling_inverse" in point.keys()
parent = point.pop("pooling_parent")
inverse = point.pop("pooling_inverse")
point = self.proj(point)
parent = self.proj_skip(parent)
parent.feat = parent.feat + point.feat[inverse]
if self.traceable:
parent["unpooling_parent"] = point
return parent
class Embedding(PointModule):
def __init__(
self,
in_channels,
embed_channels,
norm_layer=None,
act_layer=None,
):
super().__init__()
self.in_channels = in_channels
self.embed_channels = embed_channels
# TODO: check remove spconv
self.stem = PointSequential(
conv=spconv.SubMConv3d(
in_channels,
embed_channels,
kernel_size=5,
padding=1,
bias=False,
indice_key="stem",
)
)
if norm_layer is not None:
self.stem.add(norm_layer(embed_channels), name="norm")
if act_layer is not None:
self.stem.add(act_layer(), name="act")
def forward(self, point: Point):
point = self.stem(point)
return point
class PointTransformerV3(PointModule):
def __init__(
self,
in_channels=6,
order=("z", "z-trans", "hilbert", "hilbert-trans"),
stride=(2, 2, 2, 2),
enc_depths=(2, 2, 2, 6, 2),
enc_channels=(32, 64, 128, 256, 512),
enc_num_head=(2, 4, 8, 16, 32),
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
dec_depths=(2, 2, 2, 2),
dec_channels=(64, 64, 128, 256),
dec_num_head=(4, 4, 8, 16),
dec_patch_size=(1024, 1024, 1024, 1024),
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
drop_path=0.3,
pre_norm=True,
shuffle_orders=True,
enable_rpe=False,
enable_flash=False,#True,
upcast_attention=False,
upcast_softmax=False,
cls_mode=False,
pdnorm_bn=False,
pdnorm_ln=False,
pdnorm_decouple=True,
pdnorm_adaptive=False,
pdnorm_affine=True,
pdnorm_conditions=("ScanNet", "S3DIS", "Structured3D"),
):
super().__init__()
self.num_stages = len(enc_depths)
self.order = [order] if isinstance(order, str) else order
self.cls_mode = cls_mode
self.shuffle_orders = shuffle_orders
assert self.num_stages == len(stride) + 1
assert self.num_stages == len(enc_depths)
assert self.num_stages == len(enc_channels)
assert self.num_stages == len(enc_num_head)
assert self.num_stages == len(enc_patch_size)
assert self.cls_mode or self.num_stages == len(dec_depths) + 1
assert self.cls_mode or self.num_stages == len(dec_channels) + 1
assert self.cls_mode or self.num_stages == len(dec_num_head) + 1
assert self.cls_mode or self.num_stages == len(dec_patch_size) + 1
# norm layers
if pdnorm_bn:
bn_layer = partial(
PDNorm,
norm_layer=partial(
nn.BatchNorm1d, eps=1e-3, momentum=0.01, affine=pdnorm_affine
),
conditions=pdnorm_conditions,
decouple=pdnorm_decouple,
adaptive=pdnorm_adaptive,
)
else:
bn_layer = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)
if pdnorm_ln:
ln_layer = partial(
PDNorm,
norm_layer=partial(nn.LayerNorm, elementwise_affine=pdnorm_affine),
conditions=pdnorm_conditions,
decouple=pdnorm_decouple,
adaptive=pdnorm_adaptive,
)
else:
ln_layer = nn.LayerNorm
# activation layers
act_layer = nn.GELU
self.embedding = Embedding(
in_channels=in_channels,
embed_channels=enc_channels[0],
norm_layer=bn_layer,
act_layer=act_layer,
)
# encoder
enc_drop_path = [
x.item() for x in torch.linspace(0, drop_path, sum(enc_depths))
]
self.enc = PointSequential()
for s in range(self.num_stages):
enc_drop_path_ = enc_drop_path[
sum(enc_depths[:s]) : sum(enc_depths[: s + 1])
]
enc = PointSequential()
if s > 0:
enc.add(
SerializedPooling(
in_channels=enc_channels[s - 1],
out_channels=enc_channels[s],
stride=stride[s - 1],
norm_layer=bn_layer,
act_layer=act_layer,
),
name="down",
)
for i in range(enc_depths[s]):
enc.add(
Block(
channels=enc_channels[s],
num_heads=enc_num_head[s],
patch_size=enc_patch_size[s],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=proj_drop,
drop_path=enc_drop_path_[i],
norm_layer=ln_layer,
act_layer=act_layer,
pre_norm=pre_norm,
order_index=i % len(self.order),
cpe_indice_key=f"stage{s}",
enable_rpe=enable_rpe,
enable_flash=enable_flash,
upcast_attention=upcast_attention,
upcast_softmax=upcast_softmax,
),
name=f"block{i}",
)
if len(enc) != 0:
self.enc.add(module=enc, name=f"enc{s}")
# decoder
if not self.cls_mode:
dec_drop_path = [
x.item() for x in torch.linspace(0, drop_path, sum(dec_depths))
]
self.dec = PointSequential()
dec_channels = list(dec_channels) + [enc_channels[-1]]
for s in reversed(range(self.num_stages - 1)):
dec_drop_path_ = dec_drop_path[
sum(dec_depths[:s]) : sum(dec_depths[: s + 1])
]
dec_drop_path_.reverse()
dec = PointSequential()
dec.add(
SerializedUnpooling(
in_channels=dec_channels[s + 1],
skip_channels=enc_channels[s],
out_channels=dec_channels[s],
norm_layer=bn_layer,
act_layer=act_layer,
),
name="up",
)
for i in range(dec_depths[s]):
dec.add(
Block(
channels=dec_channels[s],
num_heads=dec_num_head[s],
patch_size=dec_patch_size[s],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=proj_drop,
drop_path=dec_drop_path_[i],
norm_layer=ln_layer,
act_layer=act_layer,
pre_norm=pre_norm,
order_index=i % len(self.order),
cpe_indice_key=f"stage{s}",
enable_rpe=enable_rpe,
enable_flash=enable_flash,
upcast_attention=upcast_attention,
upcast_softmax=upcast_softmax,
),
name=f"block{i}",
)
self.dec.add(module=dec, name=f"dec{s}")
def forward(self, data_dict):
"""
A data_dict is a dictionary containing properties of a batched point cloud.
It should contain the following properties for PTv3:
1. "feat": feature of point cloud
2. "grid_coord": discrete coordinate after grid sampling (voxelization) or "coord" + "grid_size"
3. "offset" or "batch": https://github.com/Pointcept/Pointcept?tab=readme-ov-file#offset
"""
point = Point(data_dict)
point.serialization(order=self.order, shuffle_orders=self.shuffle_orders)
point.sparsify()
point = self.embedding(point)
point = self.enc(point) #23,512
if not self.cls_mode:
point = self.dec(point) #n_pts, 64
return point
class PointSemSeg(nn.Module):
def __init__(self, args, dim_output, emb=64, init_logit_scale=np.log(1 / 0.07)):
super().__init__()
self.dim_output = dim_output
# define the extractor
self.extractor = PointTransformerV3() # this outputs a 64-dim feature per point
# define logit scale
self.ln_logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale)
self.fc1 = nn.Linear(emb, emb)
self.fc2 = nn.Linear(emb, emb)
self.fc3 = nn.Linear(emb, emb)
self.fc4 = nn.Linear(emb, dim_output)
def distillation_head(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return x
def freeze_extractor(self):
for param in self.extractor.parameters():
param.requires_grad = False
def forward(self, x, return_pts_feat=False):
pointall = self.extractor(x)
feature = pointall["feat"] #[n_pts_cur_batch, 64]
x = self.distillation_head(feature) #[n_pts_cur_batch, dim_out]
if return_pts_feat:
return x, feature
else:
return x
class Find3D(nn.Module, PyTorchModelHubMixin):
def __init__(self, dim_output, emb=64, init_logit_scale=np.log(1 / 0.07)):
super().__init__()
self.dim_output = dim_output
# define the extractor
self.extractor = PointTransformerV3() # this outputs a 64-dim feature per point
# define logit scale
self.ln_logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale)
self.fc1 = nn.Linear(emb, emb)
self.fc2 = nn.Linear(emb, emb)
self.fc3 = nn.Linear(emb, emb)
self.fc4 = nn.Linear(emb, dim_output)
def distillation_head(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return x
def freeze_extractor(self):
for param in self.extractor.parameters():
param.requires_grad = False
def forward(self, x, return_pts_feat=False):
pointall = self.extractor(x)
feature = pointall["feat"] #[n_pts_cur_batch, 64]
x = self.distillation_head(feature) #[n_pts_cur_batch, dim_out]
if return_pts_feat:
return x, feature
else:
return x |