Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch.autograd import Function | |
from pointops._C import farthest_point_sampling_cuda | |
class FarthestPointSampling(Function): | |
def forward(ctx, xyz, offset, new_offset): | |
""" | |
input: coords: (n, 3), offset: (b), new_offset: (b) | |
output: idx: (m) | |
""" | |
assert xyz.is_contiguous() | |
n, b, n_max = xyz.shape[0], offset.shape[0], offset[0] | |
for i in range(1, b): | |
n_max = max(offset[i] - offset[i - 1], n_max) | |
idx = torch.cuda.IntTensor(new_offset[b - 1].item()).zero_() | |
tmp = torch.cuda.FloatTensor(n).fill_(1e10) | |
farthest_point_sampling_cuda( | |
b, n_max, xyz, offset.int(), new_offset.int(), tmp, idx | |
) | |
del tmp | |
return idx | |
farthest_point_sampling = FarthestPointSampling.apply | |