ziqima's picture
initial commit
4893ce0
raw
history blame
832 Bytes
import torch
from torch.autograd import Function
from pointops._C import farthest_point_sampling_cuda
class FarthestPointSampling(Function):
@staticmethod
def forward(ctx, xyz, offset, new_offset):
"""
input: coords: (n, 3), offset: (b), new_offset: (b)
output: idx: (m)
"""
assert xyz.is_contiguous()
n, b, n_max = xyz.shape[0], offset.shape[0], offset[0]
for i in range(1, b):
n_max = max(offset[i] - offset[i - 1], n_max)
idx = torch.cuda.IntTensor(new_offset[b - 1].item()).zero_()
tmp = torch.cuda.FloatTensor(n).fill_(1e10)
farthest_point_sampling_cuda(
b, n_max, xyz, offset.int(), new_offset.int(), tmp, idx
)
del tmp
return idx
farthest_point_sampling = FarthestPointSampling.apply