weight = None # path to model weight resume = False # whether to resume training process evaluate = True # evaluate after each epoch training process test_only = False # test process seed = None # train process will init a random seed and record save_path = "exp/default" num_worker = 16 # total worker in all gpu batch_size = 16 # total batch size in all gpu batch_size_val = None # auto adapt to bs 1 for each gpu batch_size_test = None # auto adapt to bs 1 for each gpu epoch = 100 # total epoch, data loop = epoch // eval_epoch eval_epoch = 100 # sche total eval & checkpoint epoch clip_grad = None # disable with None, enable with a float sync_bn = False enable_amp = False empty_cache = False empty_cache_per_epoch = False find_unused_parameters = False mix_prob = 0 param_dicts = None # example: param_dicts = [dict(keyword="block", lr_scale=0.1)] # hook hooks = [ dict(type="CheckpointLoader"), dict(type="IterationTimer", warmup_iter=2), dict(type="InformationWriter"), dict(type="SemSegEvaluator"), dict(type="CheckpointSaver", save_freq=None), dict(type="PreciseEvaluator", test_last=False), ] # Trainer train = dict(type="DefaultTrainer") # Tester test = dict(type="SemSegTester", verbose=True)