# -------------------------------------------------------- # Octree-based Sparse Convolutional Neural Networks # Copyright (c) 2022 Peng-Shuai Wang # Licensed under The MIT License [see LICENSE for details] # Written by Peng-Shuai Wang # -------------------------------------------------------- import torch from typing import Optional, Union class KeyLUT: def __init__(self): r256 = torch.arange(256, dtype=torch.int64) r512 = torch.arange(512, dtype=torch.int64) zero = torch.zeros(256, dtype=torch.int64) device = torch.device("cpu") self._encode = { device: ( self.xyz2key(r256, zero, zero, 8), self.xyz2key(zero, r256, zero, 8), self.xyz2key(zero, zero, r256, 8), ) } self._decode = {device: self.key2xyz(r512, 9)} def encode_lut(self, device=torch.device("cpu")): if device not in self._encode: cpu = torch.device("cpu") self._encode[device] = tuple(e.to(device) for e in self._encode[cpu]) return self._encode[device] def decode_lut(self, device=torch.device("cpu")): if device not in self._decode: cpu = torch.device("cpu") self._decode[device] = tuple(e.to(device) for e in self._decode[cpu]) return self._decode[device] def xyz2key(self, x, y, z, depth): key = torch.zeros_like(x) for i in range(depth): mask = 1 << i key = ( key | ((x & mask) << (2 * i + 2)) | ((y & mask) << (2 * i + 1)) | ((z & mask) << (2 * i + 0)) ) return key def key2xyz(self, key, depth): x = torch.zeros_like(key) y = torch.zeros_like(key) z = torch.zeros_like(key) for i in range(depth): x = x | ((key & (1 << (3 * i + 2))) >> (2 * i + 2)) y = y | ((key & (1 << (3 * i + 1))) >> (2 * i + 1)) z = z | ((key & (1 << (3 * i + 0))) >> (2 * i + 0)) return x, y, z _key_lut = KeyLUT() def xyz2key( x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, b: Optional[Union[torch.Tensor, int]] = None, depth: int = 16, ): r"""Encodes :attr:`x`, :attr:`y`, :attr:`z` coordinates to the shuffled keys based on pre-computed look up tables. The speed of this function is much faster than the method based on for-loop. Args: x (torch.Tensor): The x coordinate. y (torch.Tensor): The y coordinate. z (torch.Tensor): The z coordinate. b (torch.Tensor or int): The batch index of the coordinates, and should be smaller than 32768. If :attr:`b` is :obj:`torch.Tensor`, the size of :attr:`b` must be the same as :attr:`x`, :attr:`y`, and :attr:`z`. depth (int): The depth of the shuffled key, and must be smaller than 17 (< 17). """ EX, EY, EZ = _key_lut.encode_lut(x.device) x, y, z = x.long(), y.long(), z.long() mask = 255 if depth > 8 else (1 << depth) - 1 key = EX[x & mask] | EY[y & mask] | EZ[z & mask] if depth > 8: mask = (1 << (depth - 8)) - 1 key16 = EX[(x >> 8) & mask] | EY[(y >> 8) & mask] | EZ[(z >> 8) & mask] key = key16 << 24 | key if b is not None: b = b.long() key = b << 48 | key return key def key2xyz(key: torch.Tensor, depth: int = 16): r"""Decodes the shuffled key to :attr:`x`, :attr:`y`, :attr:`z` coordinates and the batch index based on pre-computed look up tables. Args: key (torch.Tensor): The shuffled key. depth (int): The depth of the shuffled key, and must be smaller than 17 (< 17). """ DX, DY, DZ = _key_lut.decode_lut(key.device) x, y, z = torch.zeros_like(key), torch.zeros_like(key), torch.zeros_like(key) b = key >> 48 key = key & ((1 << 48) - 1) n = (depth + 2) // 3 for i in range(n): k = key >> (i * 9) & 511 x = x | (DX[k] << (i * 3)) y = y | (DY[k] << (i * 3)) z = z | (DZ[k] << (i * 3)) return x, y, z, b