MotionInversion / models /dit /latte_t2v.py
ziyangmai's picture
page demo
113884e
raw
history blame
48.5 kB
import torch
import os
import json
from dataclasses import dataclass
from einops import rearrange, repeat
from typing import Any, Dict, Optional, Tuple
from diffusers.models import Transformer2DModel
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate
from diffusers.models.embeddings import get_1d_sincos_pos_embed_from_grid, ImagePositionalEmbeddings, CaptionProjection, PatchEmbed, CombinedTimestepSizeEmbeddings
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero
from diffusers.models.attention_processor import Attention
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
from dataclasses import dataclass
import torch
import torch.nn.functional as F
from torch import nn
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
r"""
A gated self-attention dense layer that combines visual features and object features.
Parameters:
query_dim (`int`): The number of channels in the query.
context_dim (`int`): The number of channels in the context.
n_heads (`int`): The number of heads to use for attention.
d_head (`int`): The number of channels in each head.
"""
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
super().__init__()
# we need a linear projection since we need cat visual feature and obj feature
self.linear = nn.Linear(context_dim, query_dim)
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
self.ff = FeedForward(query_dim, activation_fn="geglu")
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
self.enabled = True
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
if not self.enabled:
return x
n_visual = x.shape[1]
objs = self.linear(objs)
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
return x
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh")
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(linear_cls(inner_dim, dim_out))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
for module in self.net:
if isinstance(module, compatible_cls):
hidden_states = module(hidden_states, scale)
else:
hidden_states = module(hidden_states)
return hidden_states
@maybe_allow_in_graph
class BasicTransformerBlock_(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, *optional*, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*, defaults to `None`):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
norm_eps: float = 1e-5,
final_dropout: bool = False,
attention_type: str = "default",
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
self.use_layer_norm = norm_type == "layer_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
)
if positional_embeddings and (num_positional_embeddings is None):
raise ValueError(
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
)
if positional_embeddings == "sinusoidal":
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
else:
self.pos_embed = None
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif self.use_ada_layer_norm_zero:
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
else:
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
)
# # 2. Cross-Attn
# if cross_attention_dim is not None or double_self_attention:
# # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# # the second cross attention block.
# self.norm2 = (
# AdaLayerNorm(dim, num_embeds_ada_norm)
# if self.use_ada_layer_norm
# else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
# )
# self.attn2 = Attention(
# query_dim=dim,
# cross_attention_dim=cross_attention_dim if not double_self_attention else None,
# heads=num_attention_heads,
# dim_head=attention_head_dim,
# dropout=dropout,
# bias=attention_bias,
# upcast_attention=upcast_attention,
# ) # is self-attn if encoder_hidden_states is none
# else:
# self.norm2 = None
# self.attn2 = None
# 3. Feed-forward
# if not self.use_ada_layer_norm_single:
# self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
# 4. Fuser
if attention_type == "gated" or attention_type == "gated-text-image":
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
# 5. Scale-shift for PixArt-Alpha.
if self.use_ada_layer_norm_single:
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
elif self.use_layer_norm:
norm_hidden_states = self.norm1(hidden_states)
elif self.use_ada_layer_norm_single:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
norm_hidden_states = norm_hidden_states.squeeze(1)
else:
raise ValueError("Incorrect norm used")
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
# 1. Retrieve lora scale.
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
# 2. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
elif self.use_ada_layer_norm_single:
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 2.5 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# # 3. Cross-Attention
# if self.attn2 is not None:
# if self.use_ada_layer_norm:
# norm_hidden_states = self.norm2(hidden_states, timestep)
# elif self.use_ada_layer_norm_zero or self.use_layer_norm:
# norm_hidden_states = self.norm2(hidden_states)
# elif self.use_ada_layer_norm_single:
# # For PixArt norm2 isn't applied here:
# # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
# norm_hidden_states = hidden_states
# else:
# raise ValueError("Incorrect norm")
# if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
# norm_hidden_states = self.pos_embed(norm_hidden_states)
# attn_output = self.attn2(
# norm_hidden_states,
# encoder_hidden_states=encoder_hidden_states,
# attention_mask=encoder_attention_mask,
# **cross_attention_kwargs,
# )
# hidden_states = attn_output + hidden_states
# 4. Feed-forward
# if not self.use_ada_layer_norm_single:
# norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self.use_ada_layer_norm_single:
# norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = self.norm3(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
ff_output = torch.cat(
[
self.ff(hid_slice, scale=lora_scale)
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
],
dim=self._chunk_dim,
)
else:
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
elif self.use_ada_layer_norm_single:
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
class AdaLayerNormSingle(nn.Module):
r"""
Norm layer adaptive layer norm single (adaLN-single).
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
Parameters:
embedding_dim (`int`): The size of each embedding vector.
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
"""
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False):
super().__init__()
self.emb = CombinedTimestepSizeEmbeddings(
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions
)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
def forward(
self,
timestep: torch.Tensor,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
batch_size: int = None,
hidden_dtype: Optional[torch.dtype] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# No modulation happening here.
embedded_timestep = self.emb(timestep, batch_size=batch_size, hidden_dtype=hidden_dtype, resolution=None, aspect_ratio=None)
return self.linear(self.silu(embedded_timestep)), embedded_timestep
@dataclass
class Transformer3DModelOutput(BaseOutput):
"""
The output of [`Transformer2DModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
distributions for the unnoised latent pixels.
"""
sample: torch.FloatTensor
class LatteT2V(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
"""
A 2D Transformer model for image-like data.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
This is fixed during training since it is used to learn a number of position embeddings.
num_vector_embeds (`int`, *optional*):
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
num_embeds_ada_norm ( `int`, *optional*):
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
added to the hidden states.
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the `TransformerBlocks` attention should contain a bias parameter.
"""
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
patch_size: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_type: str = "layer_norm",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
attention_type: str = "default",
caption_channels: int = None,
video_length: int = 16,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.video_length = video_length
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
# Define whether input is continuous or discrete depending on configuration
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
self.is_input_vectorized = num_vector_embeds is not None
self.is_input_patches = in_channels is not None and patch_size is not None
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
deprecation_message = (
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
)
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
norm_type = "ada_norm"
if self.is_input_continuous and self.is_input_vectorized:
raise ValueError(
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
" sure that either `in_channels` or `num_vector_embeds` is None."
)
elif self.is_input_vectorized and self.is_input_patches:
raise ValueError(
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
" sure that either `num_vector_embeds` or `num_patches` is None."
)
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
raise ValueError(
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
)
# 2. Define input layers
if self.is_input_continuous:
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
if use_linear_projection:
self.proj_in = linear_cls(in_channels, inner_dim)
else:
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
elif self.is_input_vectorized:
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
self.height = sample_size
self.width = sample_size
self.num_vector_embeds = num_vector_embeds
self.num_latent_pixels = self.height * self.width
self.latent_image_embedding = ImagePositionalEmbeddings(
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
)
elif self.is_input_patches:
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
self.height = sample_size
self.width = sample_size
self.patch_size = patch_size
interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
interpolation_scale = max(interpolation_scale, 1)
self.pos_embed = PatchEmbed(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
)
for d in range(num_layers)
]
)
# Define temporal transformers blocks
self.temporal_transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock_( # one attention
inner_dim,
num_attention_heads, # num_attention_heads
attention_head_dim, # attention_head_dim 72
dropout=dropout,
cross_attention_dim=None,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=False,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
)
for d in range(num_layers)
]
)
# 4. Define output layers
self.out_channels = in_channels if out_channels is None else out_channels
if self.is_input_continuous:
# TODO: should use out_channels for continuous projections
if use_linear_projection:
self.proj_out = linear_cls(inner_dim, in_channels)
else:
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
elif self.is_input_vectorized:
self.norm_out = nn.LayerNorm(inner_dim)
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
elif self.is_input_patches and norm_type != "ada_norm_single":
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
elif self.is_input_patches and norm_type == "ada_norm_single":
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
# 5. PixArt-Alpha blocks.
self.adaln_single = None
self.use_additional_conditions = False
if norm_type == "ada_norm_single":
self.use_additional_conditions = self.config.sample_size == 128 # False, 128 -> 1024
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
# additional conditions until we find better name
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
self.caption_projection = None
if caption_channels is not None:
self.caption_projection = CaptionProjection(in_features=caption_channels, hidden_size=inner_dim)
self.gradient_checkpointing = False
# define temporal positional embedding
temp_pos_embed = self.get_1d_sincos_temp_embed(inner_dim, video_length) # 1152 hidden size
self.register_buffer("temp_pos_embed", torch.from_numpy(temp_pos_embed).float().unsqueeze(0), persistent=False)
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
timestep: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
use_image_num: int = 0,
enable_temporal_attentions: bool = True,
return_dict: bool = True,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous):
Input `hidden_states`.
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
input_batch_size, c, frame, h, w = hidden_states.shape
frame = frame - use_image_num
hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w').contiguous()
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: # ndim == 2 means no image joint
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
encoder_attention_mask = repeat(encoder_attention_mask, 'b 1 l -> (b f) 1 l', f=frame).contiguous()
elif encoder_attention_mask is not None and encoder_attention_mask.ndim == 3: # ndim == 3 means image joint
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask_video = encoder_attention_mask[:, :1, ...]
encoder_attention_mask_video = repeat(encoder_attention_mask_video, 'b 1 l -> b (1 f) l', f=frame).contiguous()
encoder_attention_mask_image = encoder_attention_mask[:, 1:, ...]
encoder_attention_mask = torch.cat([encoder_attention_mask_video, encoder_attention_mask_image], dim=1)
encoder_attention_mask = rearrange(encoder_attention_mask, 'b n l -> (b n) l').contiguous().unsqueeze(1)
# Retrieve lora scale.
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
# 1. Input
if self.is_input_patches: # here
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
num_patches = height * width
hidden_states = self.pos_embed(hidden_states) # alrady add positional embeddings
if self.adaln_single is not None:
if self.use_additional_conditions and added_cond_kwargs is None:
raise ValueError(
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
)
# batch_size = hidden_states.shape[0]
batch_size = input_batch_size
timestep, embedded_timestep = self.adaln_single(
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
# 2. Blocks
if self.caption_projection is not None:
batch_size = hidden_states.shape[0]
encoder_hidden_states = self.caption_projection(encoder_hidden_states) # 3 120 1152
if use_image_num != 0 and self.training:
encoder_hidden_states_video = encoder_hidden_states[:, :1, ...]
encoder_hidden_states_video = repeat(encoder_hidden_states_video, 'b 1 t d -> b (1 f) t d', f=frame).contiguous()
encoder_hidden_states_image = encoder_hidden_states[:, 1:, ...]
encoder_hidden_states = torch.cat([encoder_hidden_states_video, encoder_hidden_states_image], dim=1)
encoder_hidden_states_spatial = rearrange(encoder_hidden_states, 'b f t d -> (b f) t d').contiguous()
else:
encoder_hidden_states_spatial = repeat(encoder_hidden_states, 'b t d -> (b f) t d', f=frame).contiguous()
# prepare timesteps for spatial and temporal block
timestep_spatial = repeat(timestep, 'b d -> (b f) d', f=frame + use_image_num).contiguous()
timestep_temp = repeat(timestep, 'b d -> (b p) d', p=num_patches).contiguous()
for i, (spatial_block, temp_block) in enumerate(zip(self.transformer_blocks, self.temporal_transformer_blocks)):
if self.training and self.gradient_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
spatial_block,
hidden_states,
attention_mask,
encoder_hidden_states_spatial,
encoder_attention_mask,
timestep_spatial,
cross_attention_kwargs,
class_labels,
use_reentrant=False,
)
if enable_temporal_attentions:
hidden_states = rearrange(hidden_states, '(b f) t d -> (b t) f d', b=input_batch_size).contiguous()
if use_image_num != 0: # image-video joitn training
hidden_states_video = hidden_states[:, :frame, ...]
hidden_states_image = hidden_states[:, frame:, ...]
if i == 0:
hidden_states_video = hidden_states_video + self.temp_pos_embed
hidden_states_video = torch.utils.checkpoint.checkpoint(
temp_block,
hidden_states_video,
None, # attention_mask
None, # encoder_hidden_states
None, # encoder_attention_mask
timestep_temp,
cross_attention_kwargs,
class_labels,
use_reentrant=False,
)
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1)
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', b=input_batch_size).contiguous()
else:
if i == 0:
hidden_states = hidden_states + self.temp_pos_embed
hidden_states = torch.utils.checkpoint.checkpoint(
temp_block,
hidden_states,
None, # attention_mask
None, # encoder_hidden_states
None, # encoder_attention_mask
timestep_temp,
cross_attention_kwargs,
class_labels,
use_reentrant=False,
)
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', b=input_batch_size).contiguous()
else:
hidden_states = spatial_block(
hidden_states,
attention_mask,
encoder_hidden_states_spatial,
encoder_attention_mask,
timestep_spatial,
cross_attention_kwargs,
class_labels,
)
if enable_temporal_attentions:
hidden_states = rearrange(hidden_states, '(b f) t d -> (b t) f d', b=input_batch_size).contiguous()
if use_image_num != 0 and self.training:
hidden_states_video = hidden_states[:, :frame, ...]
hidden_states_image = hidden_states[:, frame:, ...]
hidden_states_video = temp_block(
hidden_states_video,
None, # attention_mask
None, # encoder_hidden_states
None, # encoder_attention_mask
timestep_temp,
cross_attention_kwargs,
class_labels,
)
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1)
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', b=input_batch_size).contiguous()
else:
if i == 0:
hidden_states = hidden_states + self.temp_pos_embed
hidden_states = temp_block(
hidden_states,
None, # attention_mask
None, # encoder_hidden_states
None, # encoder_attention_mask
timestep_temp,
cross_attention_kwargs,
class_labels,
)
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', b=input_batch_size).contiguous()
if self.is_input_patches:
if self.config.norm_type != "ada_norm_single":
conditioning = self.transformer_blocks[0].norm1.emb(
timestep, class_labels, hidden_dtype=hidden_states.dtype
)
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
hidden_states = self.proj_out_2(hidden_states)
elif self.config.norm_type == "ada_norm_single":
embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame + use_image_num).contiguous()
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
# unpatchify
if self.adaln_single is None:
height = width = int(hidden_states.shape[1] ** 0.5)
hidden_states = hidden_states.reshape(
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
)
output = rearrange(output, '(b f) c h w -> b c f h w', b=input_batch_size).contiguous()
if not return_dict:
return (output,)
return Transformer3DModelOutput(sample=output)
def get_1d_sincos_temp_embed(self, embed_dim, length):
pos = torch.arange(0, length).unsqueeze(1)
return get_1d_sincos_pos_embed_from_grid(embed_dim, pos)
@classmethod
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, **kwargs):
if subfolder is not None:
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
config_file = os.path.join(pretrained_model_path, 'config.json')
if not os.path.isfile(config_file):
raise RuntimeError(f"{config_file} does not exist")
with open(config_file, "r") as f:
config = json.load(f)
model = cls.from_config(config, **kwargs)
# model_files = [
# os.path.join(pretrained_model_path, 'diffusion_pytorch_model.bin'),
# os.path.join(pretrained_model_path, 'diffusion_pytorch_model.safetensors')
# ]
# model_file = None
# for fp in model_files:
# if os.path.exists(fp):
# model_file = fp
# if not model_file:
# raise RuntimeError(f"{model_file} does not exist")
# if model_file.split(".")[-1] == "safetensors":
# from safetensors import safe_open
# state_dict = {}
# with safe_open(model_file, framework="pt", device="cpu") as f:
# for key in f.keys():
# state_dict[key] = f.get_tensor(key)
# else:
# state_dict = torch.load(model_file, map_location="cpu")
# for k, v in model.state_dict().items():
# if 'temporal_transformer_blocks' in k:
# state_dict.update({k: v})
# model.load_state_dict(state_dict)
return model