Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
import torch.fft as fft | |
import torch.nn.functional as F | |
from einops import rearrange | |
def BlendFreqInit(noisy_latent, noise, noise_prior=0.5, downsample_factor=4): | |
f = noisy_latent.shape[2] | |
new_h, new_w = ( | |
noisy_latent.shape[-2] // downsample_factor, | |
noisy_latent.shape[-1] // downsample_factor, | |
) | |
noise = rearrange(noise, "b c f h w -> (b f) c h w") | |
noise_down = F.interpolate(noise, size=(new_h, new_w), mode="bilinear", align_corners=True, antialias=True) | |
noise_up = F.interpolate( | |
noise_down, size=(noise.shape[-2], noise.shape[-1]), mode="bilinear", align_corners=True, antialias=True | |
) | |
noise_high_freqs = noise - noise_up | |
noisy_latent = rearrange(noisy_latent, "b c f h w -> (b f) c h w") | |
noisy_latent_down = F.interpolate( | |
noisy_latent, size=(new_h, new_w), mode="bilinear", align_corners=True, antialias=True | |
) | |
latents_low_freqs = F.interpolate( | |
noisy_latent_down, | |
size=(noisy_latent.shape[-2], noisy_latent.shape[-1]), | |
mode="bilinear", | |
align_corners=True, | |
antialias=True, | |
) | |
latent_high_freqs = noisy_latent - latents_low_freqs | |
noisy_latent = latents_low_freqs + (noise_prior) ** 0.5 * latent_high_freqs + ( | |
1-noise_prior) ** 0.5 * noise_high_freqs | |
noisy_latent = rearrange(noisy_latent, "(b f) c h w -> b c f h w", f=f) | |
return noisy_latent |