MotionInversion / app.py
ziyangmai's picture
Update app.py
2c982f9 verified
raw
history blame
9.69 kB
import gradio as gr
import os
from omegaconf import OmegaConf,ListConfig
import spaces
from train import main as train_main
from inference import inference as inference_main
import transformers
transformers.utils.move_cache()
@spaces.GPU()
def inference_app(
embedding_dir,
prompt,
video_round,
save_dir,
motion_type,
seed,
inference_steps):
print('inference info:')
print('ref video:',embedding_dir)
print('prompt:',prompt)
print('motion type:',motion_type)
print('infer steps:',inference_steps)
return inference_main(
embedding_dir=embedding_dir,
prompt=prompt,
video_round=video_round,
save_dir=save_dir,
motion_type=motion_type,
seed=seed,
inference_steps=inference_steps
)
def train_model(video, config):
output_dir = 'results'
os.makedirs(output_dir, exist_ok=True)
cur_save_dir = os.path.join(output_dir, 'custom')
config.dataset.single_video_path = video
config.train.output_dir = cur_save_dir
# copy video to cur_save_dir
video_name = 'source.mp4'
video_path = os.path.join(cur_save_dir, video_name)
os.system(f"cp {video} {video_path}")
train_main(config)
# cur_save_dir = 'results/06'
return cur_save_dir
def inference_model(text, checkpoint, inference_steps, video_type,seed):
checkpoint = os.path.join('results',checkpoint)
embedding_dir = '/'.join(checkpoint.split('/')[:-1])
video_round = checkpoint.split('/')[-1]
video_path = inference_app(
embedding_dir=embedding_dir,
prompt=text,
video_round=video_round,
save_dir=os.path.join('outputs',embedding_dir.split('/')[-1]),
motion_type=video_type,
seed=seed,
inference_steps=inference_steps
)
return video_path
def get_checkpoints(checkpoint_dir):
checkpoints = []
for root, dirs, files in os.walk(checkpoint_dir):
for file in files:
if file == 'motion_embed.pt':
checkpoints.append('/'.join(root.split('/')[-2:]))
return checkpoints
def extract_combinations(motion_embeddings_combinations):
assert len(motion_embeddings_combinations) > 0, "At least one motion embedding combination is required"
combinations = []
for combination in motion_embeddings_combinations:
name, resolution = combination.split(" ")
combinations.append([name, int(resolution)])
return combinations
def generate_config_train(motion_embeddings_combinations, unet, checkpointing_steps, max_train_steps):
default_config = OmegaConf.load('configs/config.yaml')
default_config.model.motion_embeddings.combinations = ListConfig(extract_combinations(motion_embeddings_combinations))
default_config.model.unet = unet
default_config.train.checkpointing_steps = checkpointing_steps
default_config.train.max_train_steps = max_train_steps
return default_config
def generate_config_inference(motion_embeddings_combinations, unet, checkpointing_steps, max_train_steps):
default_config = OmegaConf.load('configs/config.yaml')
default_config.model.motion_embeddings.combinations = ListConfig(extract_combinations(motion_embeddings_combinations))
default_config.model.unet = unet
default_config.train.checkpointing_steps = checkpointing_steps
default_config.train.max_train_steps = max_train_steps
return default_config
def update_preview_video(checkpoint_dir):
# get the parent dir of the checkpoint
parent_dir = '/'.join(checkpoint_dir.split('/')[:-1])
return gr.update(value=f'results/{parent_dir}/source.mp4')
def update_generated_prompt(text):
return gr.update(value=text)
if __name__ == "__main__":
if os.path.exists('results/custom'):
os.system('rm -rf results/custom')
if os.path.exists('outputs'):
os.system('rm -rf outputs')
inject_motion_embeddings_combinations = ['down 1280','up 1280','down 640','up 640']
default_motion_embeddings_combinations = ['down 1280','up 1280']
examples_inference = [
['results/pan_up/source.mp4', 'A flora garden.', 'camera', 'pan_up/checkpoint'],
['results/dolly_zoom/source.mp4','A firefighter standing in front of a burning forest captured with a dolly zoom.','camera','dolly_zoom/checkpoint'],
['results/orbit_shot/source.mp4','A micro graden with orbit shot','camera','orbit_shot/checkpoint'],
['results/walk/source.mp4', 'A elephant walking in desert', 'object', 'walk/checkpoint'],
['results/santa_dance/source.mp4','A skeleton in suit is dancing with his hands','object','santa_dance/checkpoint'],
['results/car_turn/source.mp4','A toy train chugs around a roundabout tree','object','car_turn/checkpoint'],
['results/train_ride/source.mp4','A motorbike driving in a forest','object','train_ride/checkpoint'],
]
gradio_theme = gr.themes.Default()
with gr.Blocks(
theme=gradio_theme,
title="Motion Inversion",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
.tabs button.selected {
font-size: 20px !important;
color: crimson !important;
}
h1 {
text-align: center;
display: block;
}
h2 {
text-align: center;
display: block;
}
h3 {
text-align: center;
display: block;
}
.md_feedback li {
margin-bottom: 0px !important;
}
""",
head="""
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-1FWSVCGZTG');
</script>
""",
) as demo:
gr.Markdown(
"""
# Motion Inversion for Video Customization
<p align="center">
<a href="https://arxiv.org/abs/2403.20193"><img src='https://img.shields.io/badge/arXiv-2403.20193-b31b1b.svg'></a>
<a href=''><img src='https://img.shields.io/badge/Project_Page-MotionInversion(Coming soon)-blue'></a>
<a href='https://github.com/EnVision-Research/MotionInversion'><img src='https://img.shields.io/github/stars/EnVision-Research/MotionInversion?label=GitHub%20%E2%98%85&logo=github&color=C8C'></a>
<br>
<strong>Please consider starring <span style="color: orange">&#9733;</span> the <a href="https://github.com/EnVision-Research/MotionInversion" target="_blank" rel="noopener noreferrer">GitHub Repo</a> if you find this useful!</strong>
</p>
"""
)
with gr.Tabs(elem_classes=["tabs"]):
with gr.Row():
with gr.Column():
preview_video = gr.Video(label="Preview Video")
text_input = gr.Textbox(label="Input Text")
checkpoint_dropdown = gr.Dropdown(label="Select Checkpoint", choices=get_checkpoints('results'))
seed = gr.Number(label="Seed", value=0)
inference_button = gr.Button("Generate Video")
with gr.Column():
output_video = gr.Video(label="Output Video")
generated_prompt = gr.Textbox(label="Generated Prompt")
with gr.Accordion('Encounter Errors', open=False):
gr.Markdown('''
<strong>Generally, inference time for one video often takes 45~50s on ZeroGPU</strong>.
<br>
<strong>You have exceeded your GPU quota</strong>: A limitation set by HF. Retry in an hour.
<br>
<strong>GPU task aborted</strong>: Possibly caused by ZeroGPU being used by too many people, the inference time excceeds the time limit. You may try again later, or clone the repo and run it locally.
<br>
If any other issues occur, please feel free to contact us through the community or by email ([email protected]). We will try our best to help you :)
''')
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
inference_steps = gr.Number(label="Inference Steps", value=30)
motion_type = gr.Dropdown(label="Motion Type", choices=["camera", "object"], value="object")
gr.Examples(examples=examples_inference,inputs=[preview_video,text_input,motion_type,checkpoint_dropdown])
checkpoint_dropdown.change(fn=update_preview_video, inputs=checkpoint_dropdown, outputs=preview_video)
inference_button.click(inference_model, inputs=[text_input, checkpoint_dropdown,inference_steps,motion_type, seed], outputs=output_video)
output_video.change(fn=update_generated_prompt, inputs=[text_input], outputs=generated_prompt)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)