MotionInversion / models /unet /unet_3d_blocks.py
ziyangmai's picture
page demo
113884e
raw
history blame
29.6 kB
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.utils.checkpoint as checkpoint
from torch import nn
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, TemporalConvLayer, Upsample2D
from diffusers.models.transformer_2d import Transformer2DModel
from diffusers.models.transformer_temporal import TransformerTemporalModel
# Assign gradient checkpoint function to simple variable for readability.
g_c = checkpoint.checkpoint
def use_temporal(module, num_frames, x):
if num_frames == 1:
if isinstance(module, TransformerTemporalModel):
return {"sample": x}
else:
return x
def custom_checkpoint(module, mode=None):
if mode == None: raise ValueError('Mode for gradient checkpointing cannot be none.')
custom_forward = None
if mode == 'resnet':
def custom_forward(hidden_states, temb):
inputs = module(hidden_states, temb)
return inputs
if mode == 'attn':
def custom_forward(
hidden_states,
encoder_hidden_states=None,
cross_attention_kwargs=None
):
inputs = module(
hidden_states,
encoder_hidden_states,
cross_attention_kwargs
)
return inputs
if mode == 'temp':
def custom_forward(hidden_states, num_frames=None):
inputs = use_temporal(module, num_frames, hidden_states)
if inputs is None: inputs = module(
hidden_states,
num_frames=num_frames
)
return inputs
return custom_forward
def transformer_g_c(transformer, sample, num_frames):
sample = g_c(custom_checkpoint(transformer, mode='temp'),
sample, num_frames, use_reentrant=False
)['sample']
return sample
def cross_attn_g_c(
attn,
temp_attn,
resnet,
temp_conv,
hidden_states,
encoder_hidden_states,
cross_attention_kwargs,
temb,
num_frames,
inverse_temp=False
):
def ordered_g_c(idx):
# Self and CrossAttention
if idx == 0: return g_c(custom_checkpoint(attn, mode='attn'),
hidden_states, encoder_hidden_states,cross_attention_kwargs, use_reentrant=False
)['sample']
# Temporal Self and CrossAttention
if idx == 1: return g_c(custom_checkpoint(temp_attn, mode='temp'),
hidden_states, num_frames, use_reentrant=False)['sample']
# Resnets
if idx == 2: return g_c(custom_checkpoint(resnet, mode='resnet'),
hidden_states, temb, use_reentrant=False)
# Temporal Convolutions
if idx == 3: return g_c(custom_checkpoint(temp_conv, mode='temp'),
hidden_states, num_frames, use_reentrant=False
)
# Here we call the function depending on the order in which they are called.
# For some layers, the orders are different, so we access the appropriate one by index.
if not inverse_temp:
for idx in [0,1,2,3]: hidden_states = ordered_g_c(idx)
else:
for idx in [2,3,0,1]: hidden_states = ordered_g_c(idx)
return hidden_states
def up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames):
hidden_states = g_c(custom_checkpoint(resnet, mode='resnet'), hidden_states, temb, use_reentrant=False)
hidden_states = g_c(custom_checkpoint(temp_conv, mode='temp'),
hidden_states, num_frames, use_reentrant=False
)
return hidden_states
def get_down_block(
down_block_type,
num_layers,
in_channels,
out_channels,
temb_channels,
add_downsample,
resnet_eps,
resnet_act_fn,
attn_num_head_channels,
resnet_groups=None,
cross_attention_dim=None,
downsample_padding=None,
dual_cross_attention=False,
use_linear_projection=True,
only_cross_attention=False,
upcast_attention=False,
resnet_time_scale_shift="default",
):
if down_block_type == "DownBlock3D":
return DownBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
downsample_padding=downsample_padding,
resnet_time_scale_shift=resnet_time_scale_shift,
)
elif down_block_type == "CrossAttnDownBlock3D":
if cross_attention_dim is None:
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
return CrossAttnDownBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
downsample_padding=downsample_padding,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attn_num_head_channels,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
)
raise ValueError(f"{down_block_type} does not exist.")
def get_up_block(
up_block_type,
num_layers,
in_channels,
out_channels,
prev_output_channel,
temb_channels,
add_upsample,
resnet_eps,
resnet_act_fn,
attn_num_head_channels,
resnet_groups=None,
cross_attention_dim=None,
dual_cross_attention=False,
use_linear_projection=True,
only_cross_attention=False,
upcast_attention=False,
resnet_time_scale_shift="default",
):
if up_block_type == "UpBlock3D":
return UpBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
resnet_time_scale_shift=resnet_time_scale_shift,
)
elif up_block_type == "CrossAttnUpBlock3D":
if cross_attention_dim is None:
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
return CrossAttnUpBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attn_num_head_channels,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
)
raise ValueError(f"{up_block_type} does not exist.")
class UNetMidBlock3DCrossAttn(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
attn_num_head_channels=1,
output_scale_factor=1.0,
cross_attention_dim=1280,
dual_cross_attention=False,
use_linear_projection=True,
upcast_attention=False,
):
super().__init__()
self.gradient_checkpointing = False
self.has_cross_attention = True
self.attn_num_head_channels = attn_num_head_channels
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
# there is always at least one resnet
resnets = [
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
]
temp_convs = [
TemporalConvLayer(
in_channels,
in_channels,
dropout=0.1
)
]
attentions = []
temp_attentions = []
for _ in range(num_layers):
attentions.append(
Transformer2DModel(
in_channels // attn_num_head_channels,
attn_num_head_channels,
in_channels=in_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
)
temp_attentions.append(
TransformerTemporalModel(
in_channels // attn_num_head_channels,
attn_num_head_channels,
in_channels=in_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
in_channels,
in_channels,
dropout=0.1
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.attentions = nn.ModuleList(attentions)
self.temp_attentions = nn.ModuleList(temp_attentions)
def forward(
self,
hidden_states,
temb=None,
encoder_hidden_states=None,
attention_mask=None,
num_frames=1,
cross_attention_kwargs=None,
):
if self.gradient_checkpointing:
hidden_states = up_down_g_c(
self.resnets[0],
self.temp_convs[0],
hidden_states,
temb,
num_frames
)
else:
hidden_states = self.resnets[0](hidden_states, temb)
hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
for attn, temp_attn, resnet, temp_conv in zip(
self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]
):
if self.gradient_checkpointing:
hidden_states = cross_attn_g_c(
attn,
temp_attn,
resnet,
temp_conv,
hidden_states,
encoder_hidden_states,
cross_attention_kwargs,
temb,
num_frames
)
else:
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
).sample
if num_frames > 1:
hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
hidden_states = resnet(hidden_states, temb)
if num_frames > 1:
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
return hidden_states
class CrossAttnDownBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
attn_num_head_channels=1,
cross_attention_dim=1280,
output_scale_factor=1.0,
downsample_padding=1,
add_downsample=True,
dual_cross_attention=False,
use_linear_projection=False,
only_cross_attention=False,
upcast_attention=False,
):
super().__init__()
resnets = []
attentions = []
temp_attentions = []
temp_convs = []
self.gradient_checkpointing = False
self.has_cross_attention = True
self.attn_num_head_channels = attn_num_head_channels
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1
)
)
attentions.append(
Transformer2DModel(
out_channels // attn_num_head_channels,
attn_num_head_channels,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
)
)
temp_attentions.append(
TransformerTemporalModel(
out_channels // attn_num_head_channels,
attn_num_head_channels,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.attentions = nn.ModuleList(attentions)
self.temp_attentions = nn.ModuleList(temp_attentions)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
)
]
)
else:
self.downsamplers = None
def forward(
self,
hidden_states,
temb=None,
encoder_hidden_states=None,
attention_mask=None,
num_frames=1,
cross_attention_kwargs=None,
):
# TODO(Patrick, William) - attention mask is not used
output_states = ()
for resnet, temp_conv, attn, temp_attn in zip(
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
):
if self.gradient_checkpointing:
hidden_states = cross_attn_g_c(
attn,
temp_attn,
resnet,
temp_conv,
hidden_states,
encoder_hidden_states,
cross_attention_kwargs,
temb,
num_frames,
inverse_temp=True
)
else:
hidden_states = resnet(hidden_states, temb)
if num_frames > 1:
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
).sample
if num_frames > 1:
hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class DownBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor=1.0,
add_downsample=True,
downsample_padding=1,
):
super().__init__()
resnets = []
temp_convs = []
self.gradient_checkpointing = False
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
)
]
)
else:
self.downsamplers = None
def forward(self, hidden_states, temb=None, num_frames=1):
output_states = ()
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
if self.gradient_checkpointing:
hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames)
else:
hidden_states = resnet(hidden_states, temb)
if num_frames > 1:
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class CrossAttnUpBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
attn_num_head_channels=1,
cross_attention_dim=1280,
output_scale_factor=1.0,
add_upsample=True,
dual_cross_attention=False,
use_linear_projection=False,
only_cross_attention=False,
upcast_attention=False,
):
super().__init__()
resnets = []
temp_convs = []
attentions = []
temp_attentions = []
self.gradient_checkpointing = False
self.has_cross_attention = True
self.attn_num_head_channels = attn_num_head_channels
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1
)
)
attentions.append(
Transformer2DModel(
out_channels // attn_num_head_channels,
attn_num_head_channels,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
)
)
temp_attentions.append(
TransformerTemporalModel(
out_channels // attn_num_head_channels,
attn_num_head_channels,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.attentions = nn.ModuleList(attentions)
self.temp_attentions = nn.ModuleList(temp_attentions)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
def forward(
self,
hidden_states,
res_hidden_states_tuple,
temb=None,
encoder_hidden_states=None,
upsample_size=None,
attention_mask=None,
num_frames=1,
cross_attention_kwargs=None,
):
# TODO(Patrick, William) - attention mask is not used
for resnet, temp_conv, attn, temp_attn in zip(
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.gradient_checkpointing:
hidden_states = cross_attn_g_c(
attn,
temp_attn,
resnet,
temp_conv,
hidden_states,
encoder_hidden_states,
cross_attention_kwargs,
temb,
num_frames,
inverse_temp=True
)
else:
hidden_states = resnet(hidden_states, temb)
if num_frames > 1:
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
).sample
if num_frames > 1:
hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
class UpBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
prev_output_channel: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor=1.0,
add_upsample=True,
):
super().__init__()
resnets = []
temp_convs = []
self.gradient_checkpointing = False
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, num_frames=1):
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.gradient_checkpointing:
hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames)
else:
hidden_states = resnet(hidden_states, temb)
if num_frames > 1:
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states