Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from utils.func_utils import tensor_to_vae_latent, sample_noise | |
def MotionDistillationLoss( | |
train_loss_temporal, | |
accelerator, | |
optimizers, | |
lr_schedulers, | |
unet, | |
vae, | |
text_encoder, | |
noise_scheduler, | |
batch, | |
step, | |
config | |
): | |
cache_latents = config.train.cache_latents | |
if not cache_latents: | |
latents = tensor_to_vae_latent(batch["pixel_values"], vae) | |
else: | |
latents = batch["latents"] | |
# Sample noise that we'll add to the latents | |
# use_offset_noise = use_offset_noise and not rescale_schedule | |
noise = sample_noise(latents, 0.1, False) | |
bsz = latents.shape[0] | |
# Sample a random timestep for each video | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
timesteps = timesteps.long() | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
# *Potentially* Fixes gradient checkpointing training. | |
# See: https://github.com/prigoyal/pytorch_memonger/blob/master/tutorial/Checkpointing_for_PyTorch_models.ipynb | |
# if kwargs.get('eval_train', False): | |
# unet.eval() | |
# text_encoder.eval() | |
# Encode text embeddings | |
token_ids = batch['prompt_ids'] | |
encoder_hidden_states = text_encoder(token_ids)[0] | |
detached_encoder_state = encoder_hidden_states.clone().detach() | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
encoder_hidden_states = detached_encoder_state | |
# optimization | |
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states).sample | |
loss_temporal = 0 | |
model_pred_reidual = torch.abs(model_pred[:,:,1:,:,:] - model_pred[:,:,:-1,:,:]) | |
target_residual = torch.abs(target[:, :, 1:, :, :] - target[:, :, :-1, :, :]) | |
loss_temporal = loss_temporal + (1 - F.cosine_similarity(model_pred_reidual, target_residual, dim=2).mean) | |
avg_loss_temporal = accelerator.gather(loss_temporal.repeat(config.train.train_batch_size)).mean() | |
train_loss_temporal += avg_loss_temporal.item() / config.train.gradient_accumulation_steps | |
accelerator.backward(loss_temporal) | |
optimizers[0].step() | |
lr_schedulers[0].step() | |
return loss_temporal, train_loss_temporal | |