Spaces:
Running
on
Zero
Running
on
Zero
update page
Browse files
app.py
CHANGED
@@ -1,154 +1,183 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
3 |
import random
|
|
|
|
|
|
|
4 |
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
-
import torch
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
-
|
20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
-
css = """
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
-
}
|
65 |
-
"""
|
66 |
-
|
67 |
-
with gr.Blocks(css=css) as demo:
|
68 |
-
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
-
|
71 |
-
with gr.Row():
|
72 |
-
prompt = gr.Text(
|
73 |
-
label="Prompt",
|
74 |
-
show_label=False,
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
-
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import tempfile
|
5 |
import random
|
6 |
+
import string
|
7 |
+
import json
|
8 |
+
from omegaconf import OmegaConf,ListConfig
|
9 |
|
|
|
|
|
|
|
10 |
|
11 |
+
from train import main as train_main
|
12 |
+
from inference import inference as inference_main
|
13 |
+
# 模拟训练函数
|
14 |
+
def train_model(video, config):
|
15 |
+
output_dir = 'results'
|
16 |
+
os.makedirs(output_dir, exist_ok=True)
|
17 |
+
cur_save_dir = os.path.join(output_dir, str(len(os.listdir(output_dir))).zfill(2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
config.dataset.single_video_path = video
|
20 |
+
config.train.output_dir = cur_save_dir
|
21 |
+
|
22 |
+
# copy video to cur_save_dir
|
23 |
+
video_name = 'source.mp4'
|
24 |
+
video_path = os.path.join(cur_save_dir, video_name)
|
25 |
+
os.system(f"cp {video} {video_path}")
|
26 |
|
27 |
+
train_main(config)
|
28 |
+
# cur_save_dir = 'results/06'
|
29 |
+
return cur_save_dir
|
30 |
|
31 |
+
# 模拟推理函数
|
32 |
+
def inference_model(text, checkpoint, inference_steps, video_type,seed):
|
33 |
+
|
34 |
+
checkpoint = os.path.join('results',checkpoint)
|
|
|
|
|
|
|
35 |
|
36 |
+
embedding_dir = '/'.join(checkpoint.split('/')[:-1])
|
37 |
+
video_round = checkpoint.split('/')[-1]
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
video_path = inference_main(
|
40 |
+
embedding_dir=embedding_dir,
|
41 |
+
prompt=text,
|
42 |
+
video_round=video_round,
|
43 |
+
save_dir=os.path.join('outputs',embedding_dir.split('/')[-1]),
|
44 |
+
motion_type=video_type,
|
45 |
+
seed=seed,
|
46 |
+
inference_steps=inference_steps
|
47 |
+
)
|
48 |
|
49 |
+
return video_path
|
50 |
+
|
51 |
+
|
52 |
+
# 获取checkpoint文件列表
|
53 |
+
def get_checkpoints(checkpoint_dir):
|
54 |
+
|
55 |
+
checkpoints = []
|
56 |
+
for root, dirs, files in os.walk(checkpoint_dir):
|
57 |
+
for file in files:
|
58 |
+
if file == 'motion_embed.pt':
|
59 |
+
checkpoints.append('/'.join(root.split('/')[-2:]))
|
60 |
+
return checkpoints
|
61 |
+
|
62 |
+
|
63 |
+
def extract_combinations(motion_embeddings_combinations):
|
64 |
+
assert len(motion_embeddings_combinations) > 0, "At least one motion embedding combination is required"
|
65 |
+
combinations = []
|
66 |
+
for combination in motion_embeddings_combinations:
|
67 |
+
name, resolution = combination.split(" ")
|
68 |
+
combinations.append([name, int(resolution)])
|
69 |
+
return combinations
|
70 |
+
|
71 |
+
|
72 |
+
def generate_config_train(motion_embeddings_combinations, unet, checkpointing_steps, max_train_steps):
|
73 |
+
|
74 |
+
default_config = OmegaConf.load('configs/config.yaml')
|
75 |
+
|
76 |
+
default_config.model.motion_embeddings.combinations = ListConfig(extract_combinations(motion_embeddings_combinations))
|
77 |
+
default_config.model.unet = unet
|
78 |
+
default_config.train.checkpointing_steps = checkpointing_steps
|
79 |
+
default_config.train.max_train_steps = max_train_steps
|
80 |
+
|
81 |
+
return default_config
|
82 |
+
|
83 |
+
|
84 |
+
def generate_config_inference(motion_embeddings_combinations, unet, checkpointing_steps, max_train_steps):
|
85 |
+
|
86 |
+
default_config = OmegaConf.load('configs/config.yaml')
|
87 |
+
|
88 |
+
default_config.model.motion_embeddings.combinations = ListConfig(extract_combinations(motion_embeddings_combinations))
|
89 |
+
default_config.model.unet = unet
|
90 |
+
default_config.train.checkpointing_steps = checkpointing_steps
|
91 |
+
default_config.train.max_train_steps = max_train_steps
|
92 |
+
|
93 |
+
return default_config
|
94 |
+
|
95 |
+
|
96 |
+
def update_preview_video(checkpoint_dir):
|
97 |
+
# get the parent dir of the checkpoint
|
98 |
+
parent_dir = '/'.join(checkpoint_dir.split('/')[:-1])
|
99 |
+
return gr.update(value=f'results/{parent_dir}/source.mp4')
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
+
inject_motion_embeddings_combinations = ['down 1280','up 1280','down 640','up 640']
|
104 |
+
default_motion_embeddings_combinations = ['down 1280','up 1280']
|
105 |
+
|
106 |
+
examples_train = [
|
107 |
+
'assets/train/car_turn.mp4',
|
108 |
+
'assets/train/pan_up.mp4',
|
109 |
+
'assets/train/run_up.mp4',
|
110 |
+
'assets/train/train_ride.mp4',
|
111 |
+
'assets/train/orbit_shot.mp4',
|
112 |
+
'assets/train/dolly_zoom_out.mp4',
|
113 |
+
'assets/train/santa_dance.mp4',
|
114 |
+
]
|
115 |
+
|
116 |
+
examples_inference = [
|
117 |
+
['results/pan_up/source.mp4', 'A flora garden.', 'camera', 'pan_up/checkpoint'],
|
118 |
+
['results/dolly_zoom/source.mp4','A firefighter standing in front of a burning forest captured with a dolly zoom.','camera','dolly_zoom/checkpoint-100'],
|
119 |
+
['results/orbit_shot/source.mp4','A micro graden with orbit shot','camera','orbit_shot/checkpoint-300'],
|
120 |
+
|
121 |
+
['results/walk/source.mp4', 'A elephant walking in desert', 'object', 'walk/checkpoint'],
|
122 |
+
['results/santa_dance/source.mp4','A skeleton in suit is dancing with his hands','object','santa_dance/checkpoint-200'],
|
123 |
+
['results/car_turn/source.mp4','A toy train chugs around a roundabout tree','object','car_turn/checkpoint'],
|
124 |
+
['results/train_ride/source.mp4','A motorbike driving in a forest','object','train_ride/checkpoint-200'],
|
125 |
+
]
|
126 |
+
|
127 |
+
# 创建Gradio界面
|
128 |
+
with gr.Blocks() as demo:
|
129 |
+
with gr.Tab("Train"):
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Column():
|
132 |
+
video_input = gr.Video(label="Upload Video")
|
133 |
+
train_button = gr.Button("Train")
|
134 |
+
with gr.Column():
|
135 |
+
checkpoint_output = gr.Textbox(label="Checkpoint Directory")
|
136 |
+
|
137 |
+
with gr.Accordion("Advanced Settings", open=False):
|
138 |
+
with gr.Row():
|
139 |
+
motion_embeddings_combinations = gr.Dropdown(label="Motion Embeddings Combinations", choices=inject_motion_embeddings_combinations, multiselect=True,value=default_motion_embeddings_combinations)
|
140 |
+
unet_dropdown = gr.Dropdown(label="Unet", choices=["videoCrafter2", "zeroscope_v2_576w"], value="videoCrafter2")
|
141 |
+
checkpointing_steps = gr.Dropdown(label="Checkpointing Steps",choices=[100,50],value=100)
|
142 |
+
max_train_steps = gr.Slider(label="Max Train Steps", minimum=200,maximum=500,value=200,step=50)
|
143 |
+
|
144 |
+
# examples
|
145 |
+
gr.Examples(examples=examples_train,inputs=[video_input])
|
146 |
+
|
147 |
+
|
148 |
+
train_button.click(
|
149 |
+
lambda video, mec, u, cs, mts: train_model(video, generate_config_train(mec, u, cs, mts)),
|
150 |
+
inputs=[video_input, motion_embeddings_combinations, unet_dropdown, checkpointing_steps, max_train_steps],
|
151 |
+
outputs=checkpoint_output
|
152 |
+
)
|
153 |
+
|
154 |
+
with gr.Tab("Inference"):
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column():
|
157 |
+
preview_video = gr.Video(label="Preview Video")
|
158 |
+
text_input = gr.Textbox(label="Input Text")
|
159 |
+
checkpoint_dropdown = gr.Dropdown(label="Select Checkpoint", choices=get_checkpoints('results'))
|
160 |
+
seed = gr.Number(label="Seed", value=0)
|
161 |
+
inference_button = gr.Button("Generate Video")
|
162 |
+
|
163 |
+
with gr.Column():
|
164 |
+
|
165 |
+
output_video = gr.Video(label="Output Video")
|
166 |
+
|
167 |
+
with gr.Accordion("Advanced Settings", open=False):
|
168 |
+
with gr.Row():
|
169 |
+
inference_steps = gr.Number(label="Inference Steps", value=30)
|
170 |
+
motion_type = gr.Dropdown(label="Motion Type", choices=["camera", "object"], value="object")
|
171 |
+
|
172 |
+
gr.Examples(examples=examples_inference,inputs=[preview_video,text_input,motion_type,checkpoint_dropdown])
|
173 |
+
|
174 |
+
|
175 |
+
def update_checkpoints(checkpoint_dir):
|
176 |
+
return gr.update(choices=get_checkpoints('results'))
|
177 |
+
|
178 |
+
checkpoint_dropdown.change(fn=update_preview_video, inputs=checkpoint_dropdown, outputs=preview_video)
|
179 |
+
checkpoint_output.change(update_checkpoints, inputs=checkpoint_output, outputs=checkpoint_dropdown)
|
180 |
+
inference_button.click(inference_model, inputs=[text_input, checkpoint_dropdown,inference_steps,motion_type, seed], outputs=output_video)
|
181 |
+
|
182 |
+
# 启动Gradio界面
|
183 |
+
demo.launch()
|