|
import os |
|
import streamlit as st |
|
from dotenv import load_dotenv |
|
import itertools |
|
from pinecone import Pinecone |
|
from langchain_community.llms import HuggingFaceHub |
|
from langchain.chains import LLMChain |
|
from langchain_community.document_loaders import PyPDFDirectoryLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.prompts import PromptTemplate |
|
from sentence_transformers import SentenceTransformer |
|
import torch |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
import time |
|
|
|
|
|
cache_dir = None |
|
Huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"] |
|
pc = Pinecone(api_key=st.secrets["PINECONE_API_KEY"]) |
|
index = pc.Index(st.secrets["Index_Name"]) |
|
|
|
|
|
embedding_model = "all-mpnet-base-v2" |
|
|
|
if cache_dir: |
|
embedding = SentenceTransformer(embedding_model, cache_folder=cache_dir) |
|
else: |
|
embedding = SentenceTransformer(embedding_model) |
|
|
|
|
|
def read_doc(file_path): |
|
file_loader = PyPDFDirectoryLoader(file_path) |
|
documents = file_loader.load() |
|
return documents |
|
|
|
def chunk_data(docs, chunk_size=300, chunk_overlap=50): |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) |
|
doc = text_splitter.split_documents(docs) |
|
return doc |
|
|
|
|
|
def chunks(iterable, batch_size=100): |
|
"""A helper function to break an iterable into chunks of size batch_size.""" |
|
it = iter(iterable) |
|
chunk = tuple(itertools.islice(it, batch_size)) |
|
while chunk: |
|
yield chunk |
|
chunk = tuple(itertools.islice(it, batch_size)) |
|
|
|
|
|
st.title("RAG-Anwendung (RAG Application)") |
|
st.caption("Diese Anwendung kann Ihnen helfen, kostenlos Fragen zu PDF-Dateien zu stellen. (This application can help you ask questions about PDF files for free.)") |
|
|
|
uploaded_file = st.file_uploader("Wählen Sie eine PDF-Datei, das Laden kann eine Weile dauern. (Choose a PDF file, loading might take a while.)", type="pdf") |
|
if uploaded_file is not None: |
|
|
|
temp_dir = "tempDir" |
|
if os.path.exists(temp_dir): |
|
for file in os.listdir(temp_dir): |
|
file_path = os.path.join(temp_dir, file) |
|
if os.path.isfile(file_path): |
|
os.remove(file_path) |
|
elif os.path.isdir(file_path): |
|
os.rmdir(file_path) |
|
|
|
os.makedirs(temp_dir, exist_ok=True) |
|
|
|
|
|
temp_file_path = os.path.join(temp_dir, uploaded_file.name) |
|
with open(temp_file_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
doc = read_doc(temp_dir+"/") |
|
documents = chunk_data(docs=doc) |
|
texts = [document.page_content for document in documents] |
|
pdf_vectors = embedding.encode(texts) |
|
vector_count = len(documents) |
|
example_data_generator = map(lambda i: (f'id-{i}', pdf_vectors[i], {"text": texts[i]}), range(vector_count)) |
|
|
|
for ids_vectors_chunk in chunks(example_data_generator, batch_size=100): |
|
index.upsert(vectors=ids_vectors_chunk, namespace='ns1') |
|
time.sleep(0.05) |
|
|
|
ns_count = index.describe_index_stats()['namespaces']['ns1']['vector_count'] |
|
|
|
if vector_count < ns_count: |
|
ids_to_delete = [f'id-{i}' for i in range(vector_count, ns_count)] |
|
index.delete(ids=ids_to_delete, namespace='ns1') |
|
time.sleep(0.05) |
|
|
|
|
|
with st.form(key='my_form'): |
|
sample_query = st.text_input("Stellen Sie eine Frage zu dem PDF: (Ask a question related to the PDF:)") |
|
submit_button = st.form_submit_button(label='Abschicken (Submit)') |
|
|
|
if submit_button: |
|
if uploaded_file is not None and sample_query: |
|
query_vector = embedding.encode(sample_query).tolist() |
|
query_search = index.query(vector=query_vector, top_k=5, include_metadata=True, namespace='ns1') |
|
time.sleep(0.1) |
|
matched_contents = [match["metadata"]["text"] for match in query_search["matches"]] |
|
|
|
|
|
rerank_model = "BAAI/bge-reranker-v2-m3" |
|
if cache_dir: |
|
tokenizer = AutoTokenizer.from_pretrained(rerank_model, cache_dir=cache_dir) |
|
model = AutoModelForSequenceClassification.from_pretrained(rerank_model, cache_dir=cache_dir) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(rerank_model) |
|
model = AutoModelForSequenceClassification.from_pretrained(rerank_model) |
|
model.eval() |
|
|
|
pairs = [[sample_query, content] for content in matched_contents] |
|
with torch.no_grad(): |
|
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=300) |
|
scores = model(**inputs, return_dict=True).logits.view(-1, ).float() |
|
matched_contents = [content for _, content in sorted(zip(scores, matched_contents), key=lambda x: x[0], reverse=True)] |
|
matched_contents = matched_contents[0] |
|
del model |
|
torch.cuda.empty_cache() |
|
|
|
|
|
st.markdown("### Möglicherweise relevante Abschnitte aus dem PDF (Potentially relevant sections from the PDF):") |
|
st.write(matched_contents) |
|
|
|
|
|
query_model = "meta-llama/Meta-Llama-3-8B-Instruct" |
|
llm_huggingface = HuggingFaceHub(repo_id=query_model, model_kwargs={"temperature": 0.7, "max_length": 500}) |
|
|
|
prompt_template = PromptTemplate(input_variables=['query', 'context'], template="{query}, Beim Beantworten der Frage bitte mit dem Wort 'Antwort:' beginnen,unter Berücksichtigung des folgenden Kontexts: \n\n{context}") |
|
|
|
prompt = prompt_template.format(query=sample_query, context=matched_contents) |
|
chain = LLMChain(llm=llm_huggingface, prompt=prompt_template) |
|
result = chain.run(query=sample_query, context=matched_contents) |
|
|
|
|
|
result = result.replace(prompt, "") |
|
special_start = "Antwort:" |
|
start_index = result.find(special_start) |
|
if (start_index != -1): |
|
result = result[start_index + len(special_start):].lstrip() |
|
else: |
|
result = result.lstrip() |
|
|
|
|
|
st.markdown("### Antwort (Answer):") |
|
st.write(result) |
|
st.markdown("**Hinweis:** Aufgrund begrenzter Rechenleistung kann das große Sprachmodell möglicherweise keine vollständige Antwort liefern. (Note: Due to limited computational power, the large language model might not be able to provide a complete response.)") |
|
|