Spaces:
Runtime error
Runtime error
""" | |
Usage: | |
python3 show_result.py --mode [single|pairwise-baseline|pairwise-all] | |
""" | |
import argparse | |
import pandas as pd | |
def display_result_single(args): | |
if args.input_file is None: | |
input_file = ( | |
f"data/{args.bench_name}/model_judgment/{args.judge_model}_single.jsonl" | |
) | |
else: | |
input_file = args.input_file | |
print(f"Input file: {input_file}") | |
df_all = pd.read_json(input_file, lines=True) | |
df = df_all[["model", "score", "turn"]] | |
df = df[df["score"] != -1] | |
if args.model_list is not None: | |
df = df[df["model"].isin(args.model_list)] | |
print("\n########## First turn ##########") | |
df_1 = df[df["turn"] == 1].groupby(["model", "turn"]).mean() | |
print(df_1.sort_values(by="score", ascending=False)) | |
if args.bench_name == "mt_bench": | |
print("\n########## Second turn ##########") | |
df_2 = df[df["turn"] == 2].groupby(["model", "turn"]).mean() | |
print(df_2.sort_values(by="score", ascending=False)) | |
print("\n########## Average ##########") | |
df_3 = df[["model", "score"]].groupby(["model"]).mean() | |
print(df_3.sort_values(by="score", ascending=False)) | |
def display_result_pairwise(args): | |
if args.input_file is None: | |
input_file = ( | |
f"data/{args.bench_name}/model_judgment/{args.judge_model}_pair.jsonl" | |
) | |
else: | |
input_file = args.input_file | |
print(f"Input file: {input_file}") | |
df_all = pd.read_json(input_file, lines=True) | |
df_all = df_all[(df_all["g1_winner"] != "error") & (df_all["g2_winner"] != "error")] | |
model_list = ( | |
df_all["model_1"].unique().tolist() + df_all["model_2"].unique().tolist() | |
) | |
model_list = list(set(model_list)) | |
list_res = [] | |
# traverse df row by row | |
for index, row in df_all.iterrows(): | |
if args.model_list is not None and row["model_1"] not in args.model_list: | |
continue | |
if args.baseline_model is not None: | |
if args.baseline_model not in [row["model_1"], row["model_2"]]: | |
continue | |
if row["g1_winner"] == "tie" or row["g1_winner"] != row["g2_winner"]: | |
list_res.append({"model": row["model_1"], "win": 0, "loss": 0, "tie": 1}) | |
list_res.append({"model": row["model_2"], "win": 0, "loss": 0, "tie": 1}) | |
else: | |
if row["g1_winner"] == "model_1": | |
winner = row["model_1"] | |
loser = row["model_2"] | |
else: | |
winner = row["model_2"] | |
loser = row["model_1"] | |
list_res.append({"model": winner, "win": 1, "loss": 0, "tie": 0}) | |
list_res.append({"model": loser, "win": 0, "loss": 1, "tie": 0}) | |
df = pd.DataFrame(list_res) | |
df = df.groupby(["model"]).sum() | |
# remove baseline model | |
if args.baseline_model is not None: | |
df = df[df.index != args.baseline_model] | |
# add win rate | |
df["win_rate"] = df["win"] / (df["win"] + df["loss"] + df["tie"]) | |
df["loss_rate"] = df["loss"] / (df["win"] + df["loss"] + df["tie"]) | |
# each tie counts as 0.5 win + 0.5 loss | |
df["win_rate_adjusted"] = (df["win"] + 0.5 * df["tie"]) / ( | |
df["win"] + df["loss"] + df["tie"] | |
) | |
# print(df.sort_values(by="win_rate", ascending=False)) | |
# print(df.sort_values(by="loss_rate", ascending=True)) | |
print(df.sort_values(by="win_rate_adjusted", ascending=False)) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--bench-name", type=str, default="mt_bench") | |
parser.add_argument("--input-file", type=str) | |
parser.add_argument("--judge-model", type=str, default="gpt-4") | |
parser.add_argument("--baseline-model", type=str, default="gpt-3.5-turbo") | |
parser.add_argument( | |
"--model-list", | |
type=str, | |
nargs="+", | |
default=None, | |
help="A list of models to be evaluated", | |
) | |
parser.add_argument( | |
"--mode", | |
type=str, | |
default="single", | |
choices=["pairwise-baseline", "pairwise-all", "single"], | |
help=( | |
"Evaluation mode. " | |
"`pairwise-baseline` runs pairwise comparision against a baseline. " | |
"`pairwise-all` runs pairwise comparision between all pairs. " | |
"`single` runs single answer grading." | |
), | |
) | |
args = parser.parse_args() | |
if args.mode == "single": | |
display_result_func = display_result_single | |
else: | |
if args.mode == "pairwise-all": | |
args.baseline_model = None | |
display_result_func = display_result_pairwise | |
print(f"Mode: {args.mode}") | |
display_result_func(args) | |