import json import os import numpy as np import openai import pandas as pd import requests from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, accuracy_score np.set_printoptions(threshold=10000) def get_embedding_from_api(word, model="vicuna-7b-v1.1"): if "ada" in model: resp = openai.Embedding.create( model=model, input=word, ) embedding = np.array(resp["data"][0]["embedding"]) return embedding url = "http://localhost:8000/v1/embeddings" headers = {"Content-Type": "application/json"} data = json.dumps({"model": model, "input": word}) response = requests.post(url, headers=headers, data=data) if response.status_code == 200: embedding = np.array(response.json()["data"][0]["embedding"]) return embedding else: print(f"Error: {response.status_code} - {response.text}") return None def create_embedding_data_frame(data_path, model, max_tokens=500): df = pd.read_csv(data_path, index_col=0) df = df[["Time", "ProductId", "UserId", "Score", "Summary", "Text"]] df = df.dropna() df["combined"] = ( "Title: " + df.Summary.str.strip() + "; Content: " + df.Text.str.strip() ) top_n = 1000 df = df.sort_values("Time").tail(top_n * 2) df.drop("Time", axis=1, inplace=True) df["n_tokens"] = df.combined.apply(lambda x: len(x)) df = df[df.n_tokens <= max_tokens].tail(top_n) df["embedding"] = df.combined.apply(lambda x: get_embedding_from_api(x, model)) return df def train_random_forest(df): X_train, X_test, y_train, y_test = train_test_split( list(df.embedding.values), df.Score, test_size=0.2, random_state=42 ) clf = RandomForestClassifier(n_estimators=100) clf.fit(X_train, y_train) preds = clf.predict(X_test) report = classification_report(y_test, preds) accuracy = accuracy_score(y_test, preds) return clf, accuracy, report input_datapath = "amazon_fine_food_review.csv" if not os.path.exists(input_datapath): raise Exception( f"Please download data from: https://www.kaggle.com/datasets/snap/amazon-fine-food-reviews" ) df = create_embedding_data_frame(input_datapath, "vicuna-7b-v1.1") clf, accuracy, report = train_random_forest(df) print(f"Vicuna-7b-v1.1 accuracy:{accuracy}") df = create_embedding_data_frame(input_datapath, "text-similarity-ada-001") clf, accuracy, report = train_random_forest(df) print(f"text-similarity-ada-001 accuracy:{accuracy}") df = create_embedding_data_frame(input_datapath, "text-embedding-ada-002") clf, accuracy, report = train_random_forest(df) print(f"text-embedding-ada-002 accuracy:{accuracy}")