File size: 65,306 Bytes
3494c6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 |
"""
To use a runningstats object,
1. Create the the desired stat object, e.g., `m = Mean()`
2. Feed it batches via the add method, e.g., `m.add(batch)`
3. Repeat step 2 any number of times.
4. Read out the statistic of interest, e.g., `m.mean()`
Built-in runningstats objects include:
Mean - produces mean().
Variance - mean() and variance() and stdev().
Covariance - mean(), covariance(), correlation(), variance(), stdev().
SecondMoment - moment() is the non-mean-centered covariance, E[x x^T].
Quantile - quantile(), min(), max(), median(), mean(), variance(), stdev().
TopK - topk() returns (values, indexes).
Bincount - bincount() histograms nonnegative integer data.
IoU - intersection(), union(), iou() tally binary co-occurrences.
History - history() returns concatenation of data.
CrossCovariance - covariance between two signals, without self-covariance.
CrossIoU - iou between two signals, without self-IoU.
CombinedStat - aggregates any set of stats.
Add more running stats by subclassing the Stat class.
These statistics are vectorized along dim>=1, so stat.add()
should supply a two-dimensional input where the zeroth
dimension is the batch/sampling dimension and the first
dimension is the feature dimension.
The data type and device used matches the data passed to add();
for example, for higher-precision covariances, convert to double
before calling add().
It is common to want to compute and remember a statistic sampled
over a Dataset, computed in batches, possibly caching the computed
statistic in a file. The tally(stat, dataset, cache) handles
this pattern. It takes a statistic, a dataset, and a cache filename
and sets up a data loader that can be run (or not, if cached) to
compute the statistic, adopting the convention that cached stats are
saved to and loaded from numpy npz files.
"""
import math
import os
import random
import struct
import numpy
import torch
from torch.utils.data.sampler import Sampler
def tally(stat, dataset, cache=None, quiet=False, **kwargs):
"""
To use tally, write code like the following.
stat = Mean()
ds = MyDataset()
for batch in tally(stat, ds, cache='mymean.npz', batch_size=50):
stat.add(batch)
mean = stat.mean()
The first argument should be the Stat being computed. After the
loader is exhausted, tally will bring this stat to the cpu and
cache it (if a cache is specified).
The dataset can be a torch Dataset or a plain Tensor, or it can
be a callable that returns one of those.
Details on caching via the cache= argument:
If the given filename cannot be loaded, tally will leave the
statistic object empty and set up a DataLoader object so that
the loop can be run. After the last iteration of the loop, the
completed statistic will be moved to the cpu device and also
saved in the cache file.
If the cached statistic can be loaded from the given file, tally
will not set up the data loader and instead will return a fully
loaded statistic object (on the cpu device) and an empty list as
the loader.
The `with cache_load_enabled(False):` context manager can
be used to disable loading from the cache.
If needed, a DataLoader will be created to wrap the dataset:
Keyword arguments of tally are passed to the DataLoader,
so batch_size, num_workers, pin_memory, etc. can be specified.
Subsampling is supported via sample_size= and random_sample=:
If sample_size=N is specified, rather than loading the whole
dataset, only the first N items are sampled. If additionally
random_sample=S is specified, the pseudorandom seed S will be
used to select a fixed psedorandom sample of size N to sample.
"""
assert isinstance(stat, Stat)
args = {}
for k in ["sample_size"]:
if k in kwargs:
args[k] = kwargs[k]
cached_state = load_cached_state(cache, args, quiet=quiet)
if cached_state is not None:
stat.load_state_dict(cached_state)
def empty_loader():
return
yield
return empty_loader()
loader = make_loader(dataset, **kwargs)
def wrapped_loader():
yield from loader
stat.to_(device="cpu")
if cache is not None:
save_cached_state(cache, stat, args)
return wrapped_loader()
class cache_load_enabled:
"""
When used as a context manager, cache_load_enabled(False) will prevent
tally from loading cached statsitics, forcing them to be recomputed.
"""
def __init__(self, enabled=True):
self.prev = False
self.enabled = enabled
def __enter__(self):
global global_load_cache_enabled
self.prev = global_load_cache_enabled
global_load_cache_enabled = self.enabled
def __exit__(self, exc_type, exc_value, traceback):
global global_load_cache_enabled
global_load_cache_enabled = self.prev
class Stat:
"""
Abstract base class for a running pytorch statistic.
"""
def __init__(self, state):
"""
By convention, all Stat subclasses can be initialized by passing
state=; and then they will initialize by calling load_state_dict.
"""
self.load_state_dict(resolve_state_dict(state))
def add(self, x, *args, **kwargs):
"""
Observes a batch of samples to be incorporated into the statistic.
Dimension 0 should be the batch dimension, and dimension 1 should
be the feature dimension of the pytorch tensor x.
"""
pass
def load_state_dict(self, d):
"""
Loads this Stat from a dictionary of numpy arrays as saved
by state_dict.
"""
pass
def state_dict(self):
"""
Saves this Stat as a dictionary of numpy arrays that can be
stored in an npz or reloaded later using load_state_dict.
"""
return {}
def save(self, filename):
"""
Saves this stat as an npz file containing the state_dict.
"""
save_cached_state(filename, self, {})
def load(self, filename):
"""
Loads this stat from an npz file containing a saved state_dict.
"""
self.load_state_dict(load_cached_state(filename, {}, quiet=True, throw=True))
def to_(self, device):
"""
Moves this Stat to the given device.
"""
pass
def cpu_(self):
"""
Moves this Stat to the cpu device.
"""
self.to_("cpu")
def cuda_(self):
"""
Moves this Stat to the default cuda device.
"""
self.to_("cuda")
def _normalize_add_shape(self, x, attr="data_shape"):
"""
Flattens input data to 2d.
"""
if not torch.is_tensor(x):
x = torch.tensor(x)
if len(x.shape) < 1:
x = x.view(-1)
data_shape = getattr(self, attr, None)
if data_shape is None:
data_shape = x.shape[1:]
setattr(self, attr, data_shape)
else:
assert x.shape[1:] == data_shape
return x.view(x.shape[0], int(numpy.prod(data_shape)))
def _restore_result_shape(self, x, attr="data_shape"):
"""
Restores output data to input data shape.
"""
data_shape = getattr(self, attr, None)
if data_shape is None:
return x
return x.view(data_shape * len(x.shape))
class Mean(Stat):
"""
Running mean.
"""
def __init__(self, state=None):
if state is not None:
return super().__init__(state)
self.count = 0
self.batchcount = 0
self._mean = None
self.data_shape = None
def add(self, a):
a = self._normalize_add_shape(a)
if len(a) == 0:
return
batch_count = a.shape[0]
batch_mean = a.sum(0) / batch_count
self.batchcount += 1
# Initial batch.
if self._mean is None:
self.count = batch_count
self._mean = batch_mean
return
# Update a batch using Chan-style update for numerical stability.
self.count += batch_count
new_frac = float(batch_count) / self.count
# Update the mean according to the batch deviation from the old mean.
delta = batch_mean.sub_(self._mean).mul_(new_frac)
self._mean.add_(delta)
def size(self):
return self.count
def mean(self):
return self._restore_result_shape(self._mean)
def to_(self, device):
if self._mean is not None:
self._mean = self._mean.to(device)
def load_state_dict(self, state):
self.count = state["count"]
self.batchcount = state["batchcount"]
self._mean = torch.from_numpy(state["mean"])
self.data_shape = (
None if state["data_shape"] is None else tuple(state["data_shape"])
)
def state_dict(self):
return dict(
constructor=self.__module__ + "." + self.__class__.__name__ + "()",
count=self.count,
data_shape=self.data_shape and tuple(self.data_shape),
batchcount=self.batchcount,
mean=self._mean.cpu().numpy(),
)
class NormMean(Mean):
"""
Running average of the norm of input vectors
"""
def __init__(self, state=None):
super().__init__(state)
def add(self, a):
super().add(a.norm(dim=-1))
class Variance(Stat):
"""
Running computation of mean and variance. Use this when you just need
basic stats without covariance.
"""
def __init__(self, state=None):
if state is not None:
return super().__init__(state)
self.count = 0
self.batchcount = 0
self._mean = None
self.v_cmom2 = None
self.data_shape = None
def add(self, a):
a = self._normalize_add_shape(a)
if len(a) == 0:
return
batch_count = a.shape[0]
batch_mean = a.sum(0) / batch_count
centered = a - batch_mean
self.batchcount += 1
# Initial batch.
if self._mean is None:
self.count = batch_count
self._mean = batch_mean
self.v_cmom2 = centered.pow(2).sum(0)
return
# Update a batch using Chan-style update for numerical stability.
oldcount = self.count
self.count += batch_count
new_frac = float(batch_count) / self.count
# Update the mean according to the batch deviation from the old mean.
delta = batch_mean.sub_(self._mean).mul_(new_frac)
self._mean.add_(delta)
# Update the variance using the batch deviation
self.v_cmom2.add_(centered.pow(2).sum(0))
self.v_cmom2.add_(delta.pow_(2).mul_(new_frac * oldcount))
def size(self):
return self.count
def mean(self):
return self._restore_result_shape(self._mean)
def variance(self, unbiased=True):
return self._restore_result_shape(
self.v_cmom2 / (self.count - (1 if unbiased else 0))
)
def stdev(self, unbiased=True):
return self.variance(unbiased=unbiased).sqrt()
def to_(self, device):
if self._mean is not None:
self._mean = self._mean.to(device)
if self.v_cmom2 is not None:
self.v_cmom2 = self.v_cmom2.to(device)
def load_state_dict(self, state):
self.count = state["count"]
self.batchcount = state["batchcount"]
self._mean = torch.from_numpy(state["mean"])
self.v_cmom2 = torch.from_numpy(state["cmom2"])
self.data_shape = (
None if state["data_shape"] is None else tuple(state["data_shape"])
)
def state_dict(self):
return dict(
constructor=self.__module__ + "." + self.__class__.__name__ + "()",
count=self.count,
data_shape=self.data_shape and tuple(self.data_shape),
batchcount=self.batchcount,
mean=self._mean.cpu().numpy(),
cmom2=self.v_cmom2.cpu().numpy(),
)
class Covariance(Stat):
"""
Running computation. Use this when the entire covariance matrix is needed,
and when the whole covariance matrix fits in the GPU.
Chan-style numerically stable update of mean and full covariance matrix.
Chan, Golub. LeVeque. 1983. http://www.jstor.org/stable/2683386
"""
def __init__(self, state=None):
if state is not None:
return super().__init__(state)
self.count = 0
self._mean = None
self.cmom2 = None
self.data_shape = None
def add(self, a):
a = self._normalize_add_shape(a)
if len(a) == 0:
return
batch_count = a.shape[0]
# Initial batch.
if self._mean is None:
self.count = batch_count
self._mean = a.sum(0) / batch_count
centered = a - self._mean
self.cmom2 = centered.t().mm(centered)
return
# Update a batch using Chan-style update for numerical stability.
self.count += batch_count
# Update the mean according to the batch deviation from the old mean.
delta = a - self._mean
self._mean.add_(delta.sum(0) / self.count)
delta2 = a - self._mean
# Update the variance using the batch deviation
self.cmom2.addmm_(mat1=delta.t(), mat2=delta2)
def to_(self, device):
if self._mean is not None:
self._mean = self._mean.to(device)
if self.cmom2 is not None:
self.cmom2 = self.cmom2.to(device)
def mean(self):
return self._restore_result_shape(self._mean)
def covariance(self, unbiased=True):
return self._restore_result_shape(
self.cmom2 / (self.count - (1 if unbiased else 0))
)
def correlation(self, unbiased=True):
cov = self.cmom2 / (self.count - (1 if unbiased else 0))
rstdev = cov.diag().sqrt().reciprocal()
return self._restore_result_shape(rstdev[:, None] * cov * rstdev[None, :])
def variance(self, unbiased=True):
return self._restore_result_shape(
self.cmom2.diag() / (self.count - (1 if unbiased else 0))
)
def stdev(self, unbiased=True):
return self.variance(unbiased=unbiased).sqrt()
def state_dict(self):
return dict(
constructor=self.__module__ + "." + self.__class__.__name__ + "()",
count=self.count,
data_shape=self.data_shape and tuple(self.data_shape),
mean=self._mean.cpu().numpy(),
cmom2=self.cmom2.cpu().numpy(),
)
def load_state_dict(self, state):
self.count = state["count"]
self._mean = torch.from_numpy(state["mean"])
self.cmom2 = torch.from_numpy(state["cmom2"])
self.data_shape = (
None if state["data_shape"] is None else tuple(state["data_shape"])
)
class SecondMoment(Stat):
"""
Running computation. Use this when the entire non-centered 2nd-moment
'covariance-like' matrix is needed, and when the whole matrix fits
in the GPU.
"""
def __init__(self, split_batch=True, state=None):
if state is not None:
return super().__init__(state)
self.count = 0
self.mom2 = None
self.split_batch = split_batch
def add(self, a):
a = self._normalize_add_shape(a)
if len(a) == 0:
return
# Initial batch reveals the shape of the data.
if self.count == 0:
self.mom2 = a.new(a.shape[1], a.shape[1]).zero_()
batch_count = a.shape[0]
# Update the covariance using the batch deviation
self.count += batch_count
self.mom2 += a.t().mm(a)
def to_(self, device):
if self.mom2 is not None:
self.mom2 = self.mom2.to(device)
def moment(self):
return self.mom2 / self.count
def state_dict(self):
return dict(
constructor=self.__module__ + "." + self.__class__.__name__ + "()",
count=self.count,
mom2=self.mom2.cpu().numpy(),
)
def load_state_dict(self, state):
self.count = int(state["count"])
self.mom2 = torch.from_numpy(state["mom2"])
class Bincount(Stat):
"""
Running bincount. The counted array should be an integer type with
non-negative integers.
"""
def __init__(self, state=None):
if state is not None:
return super().__init__(state)
self.count = 0
self._bincount = None
def add(self, a, size=None):
a = a.view(-1)
bincount = a.bincount()
if self._bincount is None:
self._bincount = bincount
elif len(self._bincount) < len(bincount):
bincount[: len(self._bincount)] += self._bincount
self._bincount = bincount
else:
self._bincount[: len(bincount)] += bincount
if size is None:
self.count += len(a)
else:
self.count += size
def to_(self, device):
self._bincount = self._bincount.to(device)
def size(self):
return self.count
def bincount(self):
return self._bincount
def state_dict(self):
return dict(
constructor=self.__module__ + "." + self.__class__.__name__ + "()",
count=self.count,
bincount=self._bincount.cpu().numpy(),
)
def load_state_dict(self, dic):
self.count = int(dic["count"])
self._bincount = torch.from_numpy(dic["bincount"])
class CrossCovariance(Stat):
"""
Covariance. Use this when an off-diagonal block of the covariance
matrix is needed (e.g., when the whole covariance matrix does
not fit in the GPU, this could use a quarter of the memory).
Chan-style numerically stable update of mean and full covariance matrix.
Chan, Golub. LeVeque. 1983. http://www.jstor.org/stable/2683386
"""
def __init__(self, split_batch=True, state=None):
if state is not None:
return super().__init__(state)
self.count = 0
self._mean = None
self.cmom2 = None
self.v_cmom2 = None
self.split_batch = split_batch
def add(self, a, b):
if len(a.shape) == 1:
a = a[None, :]
b = b[None, :]
assert a.shape[0] == b.shape[0]
if len(a.shape) > 2:
a, b = [
d.view(d.shape[0], d.shape[1], -1)
.permute(0, 2, 1)
.reshape(-1, d.shape[1])
for d in [a, b]
]
batch_count = a.shape[0]
# Initial batch.
if self._mean is None:
self.count = batch_count
self._mean = [d.sum(0) / batch_count for d in [a, b]]
centered = [d - bm for d, bm in zip([a, b], self._mean)]
self.v_cmom2 = [c.pow(2).sum(0) for c in centered]
self.cmom2 = centered[0].t().mm(centered[1])
return
# Update a batch using Chan-style update for numerical stability.
self.count += batch_count
# Update the mean according to the batch deviation from the old mean.
delta = [(d - bm) for d, bm in zip([a, b], self._mean)]
for m, d in zip(self._mean, delta):
m.add_(d.sum(0) / self.count)
delta2 = [(d - bm) for d, bm in zip([a, b], self._mean)]
# Update the cross-covariance using the batch deviation
self.cmom2.addmm_(mat1=delta[0].t(), mat2=delta2[1])
# Update the variance using the batch deviation
for vc2, d, d2 in zip(self.v_cmom2, delta, delta2):
vc2.add_((d * d2).sum(0))
def mean(self):
return self._mean
def variance(self, unbiased=True):
return [vc2 / (self.count - (1 if unbiased else 0)) for vc2 in self.v_cmom2]
def stdev(self, unbiased=True):
return [v.sqrt() for v in self.variance(unbiased=unbiased)]
def covariance(self, unbiased=True):
return self.cmom2 / (self.count - (1 if unbiased else 0))
def correlation(self):
covariance = self.covariance(unbiased=False)
rstdev = [s.reciprocal() for s in self.stdev(unbiased=False)]
cor = rstdev[0][:, None] * covariance * rstdev[1][None, :]
# Remove NaNs
cor[torch.isnan(cor)] = 0
return cor
def to_(self, device):
self._mean = [m.to(device) for m in self._mean]
self.v_cmom2 = [vcs.to(device) for vcs in self.v_cmom2]
self.cmom2 = self.cmom2.to(device)
def state_dict(self):
return dict(
constructor=self.__module__ + "." + self.__class__.__name__ + "()",
count=self.count,
mean_a=self._mean[0].cpu().numpy(),
mean_b=self._mean[1].cpu().numpy(),
cmom2_a=self.v_cmom2[0].cpu().numpy(),
cmom2_b=self.v_cmom2[1].cpu().numpy(),
cmom2=self.cmom2.cpu().numpy(),
)
def load_state_dict(self, state):
self.count = int(state["count"])
self._mean = [torch.from_numpy(state[f"mean_{k}"]) for k in "ab"]
self.v_cmom2 = [torch.from_numpy(state[f"cmom2_{k}"]) for k in "ab"]
self.cmom2 = torch.from_numpy(state["cmom2"])
def _float_from_bool(a):
"""
Since pytorch only supports matrix multiplication on float,
IoU computations are done using floating point types.
This function binarizes the input (positive to True and
nonpositive to False), and converts from bool to float.
If the data is already a floating-point type, it leaves
it keeps the same type; otherwise it uses float.
"""
if a.dtype == torch.bool:
return a.float()
if a.dtype.is_floating_point:
return a.sign().clamp_(0)
return (a > 0).float()
class IoU(Stat):
"""
Running computation of intersections and unions of all features.
"""
def __init__(self, state=None):
if state is not None:
return super().__init__(state)
self.count = 0
self._intersection = None
def add(self, a):
assert len(a.shape) == 2
a = _float_from_bool(a)
if self._intersection is None:
self._intersection = torch.mm(a.t(), a)
else:
self._intersection.addmm_(a.t(), a)
self.count += len(a)
def size(self):
return self.count
def intersection(self):
return self._intersection
def union(self):
total = self._intersection.diagonal(0)
return total[:, None] + total[None, :] - self._intersection
def iou(self):
return self.intersection() / (self.union() + 1e-20)
def to_(self, _device):
self._intersection = self._intersection.to(_device)
def state_dict(self):
return dict(
constructor=self.__module__ + "." + self.__class__.__name__ + "()",
count=self.count,
intersection=self._intersection.cpu().numpy(),
)
def load_state_dict(self, state):
self.count = int(state["count"])
self._intersection = torch.tensor(state["intersection"])
class CrossIoU(Stat):
"""
Running computation of intersections and unions of two binary vectors.
"""
def __init__(self, state=None):
if state is not None:
return super().__init__(state)
self.count = 0
self._intersection = None
self.total_a = None
self.total_b = None
def add(self, a, b):
assert len(a.shape) == 2 and len(b.shape) == 2
assert len(a) == len(b), f"{len(a)} vs {len(b)}"
a = _float_from_bool(a) # CUDA only supports mm on float...
b = _float_from_bool(b) # otherwise we would use integers.
intersection = torch.mm(a.t(), b)
asum = a.sum(0)
bsum = b.sum(0)
if self._intersection is None:
self._intersection = intersection
self.total_a = asum
self.total_b = bsum
else:
self._intersection += intersection
self.total_a += asum
self.total_b += bsum
self.count += len(a)
def size(self):
return self.count
def intersection(self):
return self._intersection
def union(self):
return self.total_a[:, None] + self.total_b[None, :] - self._intersection
def iou(self):
return self.intersection() / (self.union() + 1e-20)
def to_(self, _device):
self.total_a = self.total_a.to(_device)
self.total_b = self.total_b.to(_device)
self._intersection = self._intersection.to(_device)
def state_dict(self):
return dict(
constructor=self.__module__ + "." + self.__class__.__name__ + "()",
count=self.count,
total_a=self.total_a.cpu().numpy(),
total_b=self.total_b.cpu().numpy(),
intersection=self._intersection.cpu().numpy(),
)
def load_state_dict(self, state):
self.count = int(state["count"])
self.total_a = torch.tensor(state["total_a"])
self.total_b = torch.tensor(state["total_b"])
self._intersection = torch.tensor(state["intersection"])
class Quantile(Stat):
"""
Streaming randomized quantile computation for torch.
Add any amount of data repeatedly via add(data). At any time,
quantile estimates be read out using quantile(q).
Implemented as a sorted sample that retains at least r samples
(by default r = 3072); the number of retained samples will grow to
a finite ceiling as the data is accumulated. Accuracy scales according
to r: the default is to set resolution to be accurate to better than about
0.1%, while limiting storage to about 50,000 samples.
Good for computing quantiles of huge data without using much memory.
Works well on arbitrary data with probability near 1.
Based on the optimal KLL quantile algorithm by Karnin, Lang, and Liberty
from FOCS 2016. http://ieee-focs.org/FOCS-2016-Papers/3933a071.pdf
"""
def __init__(self, r=3 * 1024, buffersize=None, seed=None, state=None):
if state is not None:
return super().__init__(state)
self.depth = None
self.dtype = None
self.device = None
resolution = r * 2 # sample array is at least half full before discard
self.resolution = resolution
# Default buffersize: 128 samples (and smaller than resolution).
if buffersize is None:
buffersize = min(128, (resolution + 7) // 8)
self.buffersize = buffersize
self.samplerate = 1.0
self.data = None
self.firstfree = [0]
self.randbits = torch.ByteTensor(resolution)
self.currentbit = len(self.randbits) - 1
self.extremes = None
self.count = 0
self.batchcount = 0
def size(self):
return self.count
def _lazy_init(self, incoming):
self.depth = incoming.shape[1]
self.dtype = incoming.dtype
self.device = incoming.device
self.data = [
torch.zeros(
self.depth, self.resolution, dtype=self.dtype, device=self.device
)
]
self.extremes = torch.zeros(self.depth, 2, dtype=self.dtype, device=self.device)
self.extremes[:, 0] = float("inf")
self.extremes[:, -1] = -float("inf")
def to_(self, device):
"""Switches internal storage to specified device."""
if device != self.device:
old_data = self.data
old_extremes = self.extremes
self.data = [d.to(device) for d in self.data]
self.extremes = self.extremes.to(device)
self.device = self.extremes.device
del old_data
del old_extremes
def add(self, incoming):
if self.depth is None:
self._lazy_init(incoming)
assert len(incoming.shape) == 2
assert incoming.shape[1] == self.depth, (incoming.shape[1], self.depth)
self.count += incoming.shape[0]
self.batchcount += 1
# Convert to a flat torch array.
if self.samplerate >= 1.0:
self._add_every(incoming)
return
# If we are sampling, then subsample a large chunk at a time.
self._scan_extremes(incoming)
chunksize = int(math.ceil(self.buffersize / self.samplerate))
for index in range(0, len(incoming), chunksize):
batch = incoming[index : index + chunksize]
sample = sample_portion(batch, self.samplerate)
if len(sample):
self._add_every(sample)
def _add_every(self, incoming):
supplied = len(incoming)
index = 0
while index < supplied:
ff = self.firstfree[0]
available = self.data[0].shape[1] - ff
if available == 0:
if not self._shift():
# If we shifted by subsampling, then subsample.
incoming = incoming[index:]
if self.samplerate >= 0.5:
# First time sampling - the data source is very large.
self._scan_extremes(incoming)
incoming = sample_portion(incoming, self.samplerate)
index = 0
supplied = len(incoming)
ff = self.firstfree[0]
available = self.data[0].shape[1] - ff
copycount = min(available, supplied - index)
self.data[0][:, ff : ff + copycount] = torch.t(
incoming[index : index + copycount, :]
)
self.firstfree[0] += copycount
index += copycount
def _shift(self):
index = 0
# If remaining space at the current layer is less than half prev
# buffer size (rounding up), then we need to shift it up to ensure
# enough space for future shifting.
while self.data[index].shape[1] - self.firstfree[index] < (
-(-self.data[index - 1].shape[1] // 2) if index else 1
):
if index + 1 >= len(self.data):
return self._expand()
data = self.data[index][:, 0 : self.firstfree[index]]
data = data.sort()[0]
if index == 0 and self.samplerate >= 1.0:
self._update_extremes(data[:, 0], data[:, -1])
offset = self._randbit()
position = self.firstfree[index + 1]
subset = data[:, offset::2]
self.data[index + 1][:, position : position + subset.shape[1]] = subset
self.firstfree[index] = 0
self.firstfree[index + 1] += subset.shape[1]
index += 1
return True
def _scan_extremes(self, incoming):
# When sampling, we need to scan every item still to get extremes
self._update_extremes(
torch.min(incoming, dim=0)[0], torch.max(incoming, dim=0)[0]
)
def _update_extremes(self, minr, maxr):
self.extremes[:, 0] = torch.min(
torch.stack([self.extremes[:, 0], minr]), dim=0
)[0]
self.extremes[:, -1] = torch.max(
torch.stack([self.extremes[:, -1], maxr]), dim=0
)[0]
def _randbit(self):
self.currentbit += 1
if self.currentbit >= len(self.randbits):
self.randbits.random_(to=2)
self.currentbit = 0
return self.randbits[self.currentbit]
def state_dict(self):
state = dict(
constructor=self.__module__ + "." + self.__class__.__name__ + "()",
resolution=self.resolution,
depth=self.depth,
buffersize=self.buffersize,
samplerate=self.samplerate,
sizes=numpy.array([d.shape[1] for d in self.data]),
extremes=self.extremes.cpu().detach().numpy(),
size=self.count,
batchcount=self.batchcount,
)
for i, (d, f) in enumerate(zip(self.data, self.firstfree)):
state[f"data.{i}"] = d.cpu().detach().numpy()[:, :f].T
return state
def load_state_dict(self, state):
self.resolution = int(state["resolution"])
self.randbits = torch.ByteTensor(self.resolution)
self.currentbit = len(self.randbits) - 1
self.depth = int(state["depth"])
self.buffersize = int(state["buffersize"])
self.samplerate = float(state["samplerate"])
firstfree = []
buffers = []
for i, s in enumerate(state["sizes"]):
d = state[f"data.{i}"]
firstfree.append(d.shape[0])
buf = numpy.zeros((d.shape[1], s), dtype=d.dtype)
buf[:, : d.shape[0]] = d.T
buffers.append(torch.from_numpy(buf))
self.firstfree = firstfree
self.data = buffers
self.extremes = torch.from_numpy((state["extremes"]))
self.count = int(state["size"])
self.batchcount = int(state.get("batchcount", 0))
self.dtype = self.extremes.dtype
self.device = self.extremes.device
def min(self):
return self.minmax()[0]
def max(self):
return self.minmax()[-1]
def minmax(self):
if self.firstfree[0]:
self._scan_extremes(self.data[0][:, : self.firstfree[0]].t())
return self.extremes.clone()
def median(self):
return self.quantiles(0.5)
def mean(self):
return self.integrate(lambda x: x) / self.count
def variance(self, unbiased=True):
mean = self.mean()[:, None]
return self.integrate(lambda x: (x - mean).pow(2)) / (
self.count - (1 if unbiased else 0)
)
def stdev(self, unbiased=True):
return self.variance(unbiased=unbiased).sqrt()
def _expand(self):
cap = self._next_capacity()
if cap > 0:
# First, make a new layer of the proper capacity.
self.data.insert(
0, torch.zeros(self.depth, cap, dtype=self.dtype, device=self.device)
)
self.firstfree.insert(0, 0)
else:
# Unless we're so big we are just subsampling.
assert self.firstfree[0] == 0
self.samplerate *= 0.5
for index in range(1, len(self.data)):
# Scan for existing data that needs to be moved down a level.
amount = self.firstfree[index]
if amount == 0:
continue
position = self.firstfree[index - 1]
# Move data down if it would leave enough empty space there
# This is the key invariant: enough empty space to fit half
# of the previous level's buffer size (rounding up)
if self.data[index - 1].shape[1] - (amount + position) >= (
-(-self.data[index - 2].shape[1] // 2) if (index - 1) else 1
):
self.data[index - 1][:, position : position + amount] = self.data[
index
][:, :amount]
self.firstfree[index - 1] += amount
self.firstfree[index] = 0
else:
# Scrunch the data if it would not.
data = self.data[index][:, :amount]
data = data.sort()[0]
if index == 1:
self._update_extremes(data[:, 0], data[:, -1])
offset = self._randbit()
scrunched = data[:, offset::2]
self.data[index][:, : scrunched.shape[1]] = scrunched
self.firstfree[index] = scrunched.shape[1]
return cap > 0
def _next_capacity(self):
cap = int(math.ceil(self.resolution * (0.67 ** len(self.data))))
if cap < 2:
return 0
# Round up to the nearest multiple of 8 for better GPU alignment.
cap = -8 * (-cap // 8)
return max(self.buffersize, cap)
def _weighted_summary(self, sort=True):
if self.firstfree[0]:
self._scan_extremes(self.data[0][:, : self.firstfree[0]].t())
size = sum(self.firstfree)
weights = torch.FloatTensor(size) # Floating point
summary = torch.zeros(self.depth, size, dtype=self.dtype, device=self.device)
index = 0
for level, ff in enumerate(self.firstfree):
if ff == 0:
continue
summary[:, index : index + ff] = self.data[level][:, :ff]
weights[index : index + ff] = 2.0**level
index += ff
assert index == summary.shape[1]
if sort:
summary, order = torch.sort(summary, dim=-1)
weights = weights[order.view(-1).cpu()].view(order.shape)
summary = torch.cat(
[self.extremes[:, :1], summary, self.extremes[:, 1:]], dim=-1
)
weights = torch.cat(
[
torch.zeros(weights.shape[0], 1),
weights,
torch.zeros(weights.shape[0], 1),
],
dim=-1,
)
return (summary, weights)
def quantiles(self, quantiles):
if not hasattr(quantiles, "cpu"):
quantiles = torch.tensor(quantiles)
qshape = quantiles.shape
if self.count == 0:
return torch.full((self.depth,) + qshape, torch.nan)
summary, weights = self._weighted_summary()
cumweights = torch.cumsum(weights, dim=-1) - weights / 2
cumweights /= torch.sum(weights, dim=-1, keepdim=True)
result = torch.zeros(
self.depth, quantiles.numel(), dtype=self.dtype, device=self.device
)
# numpy is needed for interpolation
nq = quantiles.view(-1).cpu().detach().numpy()
ncw = cumweights.cpu().detach().numpy()
nsm = summary.cpu().detach().numpy()
for d in range(self.depth):
result[d] = torch.tensor(
numpy.interp(nq, ncw[d], nsm[d]), dtype=self.dtype, device=self.device
)
return result.view((self.depth,) + qshape)
def integrate(self, fun):
result = []
for level, ff in enumerate(self.firstfree):
if ff == 0:
continue
result.append(
torch.sum(fun(self.data[level][:, :ff]) * (2.0**level), dim=-1)
)
if len(result) == 0:
return None
return torch.stack(result).sum(dim=0) / self.samplerate
def readout(self, count=1001):
return self.quantiles(torch.linspace(0.0, 1.0, count))
def normalize(self, data):
"""
Given input data as taken from the training distirbution,
normalizes every channel to reflect quantile values,
uniformly distributed, within [0, 1].
"""
assert self.count > 0
assert data.shape[0] == self.depth
summary, weights = self._weighted_summary()
cumweights = torch.cumsum(weights, dim=-1) - weights / 2
cumweights /= torch.sum(weights, dim=-1, keepdim=True)
result = torch.zeros_like(data).float()
# numpy is needed for interpolation
ndata = data.cpu().numpy().reshape((data.shape[0], -1))
ncw = cumweights.cpu().numpy()
nsm = summary.cpu().numpy()
for d in range(self.depth):
normed = torch.tensor(
numpy.interp(ndata[d], nsm[d], ncw[d]),
dtype=torch.float,
device=data.device,
).clamp_(0.0, 1.0)
if len(data.shape) > 1:
normed = normed.view(*(data.shape[1:]))
result[d] = normed
return result
def sample_portion(vec, p=0.5):
"""
Subsamples a fraction (given by p) of the given batch. Used by
Quantile when the data gets very very large.
"""
bits = torch.bernoulli(
torch.zeros(vec.shape[0], dtype=torch.uint8, device=vec.device), p
)
return vec[bits]
class TopK:
"""
A class to keep a running tally of the the top k values (and indexes)
of any number of torch feature components. Will work on the GPU if
the data is on the GPU. Tracks largest by default, but tracks smallest
if largest=False is passed.
This version flattens all arrays to avoid crashes.
"""
def __init__(self, k=100, largest=True, state=None):
if state is not None:
return super().__init__(state)
self.k = k
self.count = 0
# This version flattens all data internally to 2-d tensors,
# to avoid crashes with the current pytorch topk implementation.
# The data is puffed back out to arbitrary tensor shapes on output.
self.data_shape = None
self.top_data = None
self.top_index = None
self.next = 0
self.linear_index = 0
self.perm = None
self.largest = largest
def add(self, data, index=None):
"""
Adds a batch of data to be considered for the running top k.
The zeroth dimension enumerates the observations. All other
dimensions enumerate different features.
"""
if self.top_data is None:
# Allocation: allocate a buffer of size 5*k, at least 10, for each.
self.data_shape = data.shape[1:]
feature_size = int(numpy.prod(self.data_shape))
self.top_data = torch.zeros(
feature_size, max(10, self.k * 5), out=data.new()
)
self.top_index = self.top_data.clone().long()
self.linear_index = (
0
if len(data.shape) == 1
else torch.arange(feature_size, out=self.top_index.new()).mul_(
self.top_data.shape[-1]
)[:, None]
)
size = data.shape[0]
sk = min(size, self.k)
if self.top_data.shape[-1] < self.next + sk:
# Compression: if full, keep topk only.
self.top_data[:, : self.k], self.top_index[:, : self.k] = self.topk(
sorted=False, flat=True
)
self.next = self.k
# Pick: copy the top sk of the next batch into the buffer.
# Currently strided topk is slow. So we clone after transpose.
# TODO: remove the clone() if it becomes faster.
cdata = data.reshape(size, numpy.prod(data.shape[1:])).t().clone()
td, ti = cdata.topk(sk, sorted=False, largest=self.largest)
self.top_data[:, self.next : self.next + sk] = td
if index is not None:
ti = index[ti]
else:
ti = ti + self.count
self.top_index[:, self.next : self.next + sk] = ti
self.next += sk
self.count += size
def size(self):
return self.count
def topk(self, sorted=True, flat=False):
"""
Returns top k data items and indexes in each dimension,
with channels in the first dimension and k in the last dimension.
"""
k = min(self.k, self.next)
# bti are top indexes relative to buffer array.
td, bti = self.top_data[:, : self.next].topk(
k, sorted=sorted, largest=self.largest
)
# we want to report top indexes globally, which is ti.
ti = self.top_index.view(-1)[(bti + self.linear_index).view(-1)].view(
*bti.shape
)
if flat:
return td, ti
else:
return (
td.view(*(self.data_shape + (-1,))),
ti.view(*(self.data_shape + (-1,))),
)
def to_(self, device):
if self.top_data is not None:
self.top_data = self.top_data.to(device)
if self.top_index is not None:
self.top_index = self.top_index.to(device)
if isinstance(self.linear_index, torch.Tensor):
self.linear_index = self.linear_index.to(device)
def state_dict(self):
return dict(
constructor=self.__module__ + "." + self.__class__.__name__ + "()",
k=self.k,
count=self.count,
largest=self.largest,
data_shape=self.data_shape and tuple(self.data_shape),
top_data=self.top_data.cpu().detach().numpy(),
top_index=self.top_index.cpu().detach().numpy(),
next=self.next,
linear_index=(
self.linear_index.cpu().numpy()
if isinstance(self.linear_index, torch.Tensor)
else self.linear_index
),
perm=self.perm,
)
def load_state_dict(self, state):
self.k = int(state["k"])
self.count = int(state["count"])
self.largest = bool(state.get("largest", True))
self.data_shape = (
None if state["data_shape"] is None else tuple(state["data_shape"])
)
self.top_data = torch.from_numpy(state["top_data"])
self.top_index = torch.from_numpy(state["top_index"])
self.next = int(state["next"])
self.linear_index = (
torch.from_numpy(state["linear_index"])
if len(state["linear_index"].shape) > 0
else int(state["linear_index"])
)
class History(Stat):
"""
Accumulates the concatenation of all the added data.
"""
def __init__(self, data=None, state=None):
if state is not None:
return super().__init__(state)
self._data = data
self._added = []
def _cat_added(self):
if len(self._added):
self._data = torch.cat(
([self._data] if self._data is not None else []) + self._added
)
self._added = []
def add(self, d):
self._added.append(d)
if len(self._added) > 100:
self._cat_added()
def history(self):
self._cat_added()
return self._data
def load_state_dict(self, state):
data = state["data"]
self._data = None if data is None else torch.from_numpy(data)
self._added = []
def state_dict(self):
self._cat_added()
return dict(
constructor=self.__module__ + "." + self.__class__.__name__ + "()",
data=None if self._data is None else self._data.cpu().numpy(),
)
def to_(self, device):
"""Switches internal storage to specified device."""
self._cat_added()
if self._data is not None:
self._data = self._data.to(device)
class CombinedStat(Stat):
"""
A Stat that bundles together multiple Stat objects.
Convenient for loading and saving a state_dict made up of a
hierarchy of stats, and for use with the tally() function.
Example:
cs = CombinedStat(m=Mean(), q=Quantile())
for [b] in tally(cs, MyDataSet(), cache=fn, batch_size=100):
cs.add(b)
print(cs.m.mean())
print(cs.q.median())
"""
def __init__(self, state=None, **kwargs):
self._objs = kwargs
if state is not None:
return super().__init__(state)
def __getattr__(self, k):
if k in self._objs:
return self._objs[k]
raise AttributeError()
def add(self, d, *args, **kwargs):
for obj in self._objs.values():
obj.add(d, *args, **kwargs)
def load_state_dict(self, state):
for prefix, obj in self._objs.items():
obj.load_state_dict(pull_key_prefix(prefix, state))
def state_dict(self):
result = {}
for prefix, obj in self._objs.items():
result.update(push_key_prefix(prefix, obj.state_dict()))
return result
def to_(self, device):
"""Switches internal storage to specified device."""
for v in self._objs.values():
v.to_(device)
def push_key_prefix(prefix, d):
"""
Returns a dict with the same values as d, but where each key
adds the prefix, followed by a dot.
"""
return {prefix + "." + k: v for k, v in d.items()}
def pull_key_prefix(prefix, d):
"""
Returns a filtered dict of all the items of d that start with
the given key prefix, plus a dot, with that prefix removed.
"""
pd = prefix + "."
lpd = len(pd)
return {k[lpd:]: v for k, v in d.items() if k.startswith(pd)}
# We wish to be able to save None (null) values in numpy npz files,
# yet do so without setting the unsecure 'allow_pickle' flag. To do
# that, we will encode null as a special kind of IEEE 754 NaN value.
# Inspired by https://github.com/zuiderkwast/nanbox/blob/master/nanbox.h
# we follow the same Nanboxing scheme used in JavaScriptCore
# (search for JSCJSValue.h#L435), which encodes null values in NaN
# as the NaN value with hex pattern 0xfff8000000000002.
null_numpy_value = numpy.array(
struct.unpack(">d", struct.pack(">Q", 0xFFF8000000000002))[0], dtype=numpy.float64
)
def is_null_numpy_value(v):
"""
True if v is a 64-bit float numpy scalar NaN matching null_numpy_value.
"""
return (
isinstance(v, numpy.ndarray)
and numpy.ndim(v) == 0
and v.dtype == numpy.float64
and numpy.isnan(v)
and 0xFFF8000000000002 == struct.unpack(">Q", struct.pack(">d", v))[0]
)
def box_numpy_null(d):
"""
Replaces None with null_numpy_value, leaving non-None values unchanged.
Recursively descends into a dictionary replacing None values.
"""
try:
return {k: box_numpy_null(v) for k, v in d.items()}
except Exception:
return null_numpy_value if d is None else d
def unbox_numpy_null(d):
"""
Reverses box_numpy_null, replacing null_numpy_value with None.
Recursively descends into a dictionary replacing None values.
"""
try:
return {k: unbox_numpy_null(v) for k, v in d.items()}
except Exception:
return None if is_null_numpy_value(d) else d
def resolve_state_dict(s):
"""
Resolves a state, which can be a filename or a dict-like object.
"""
if isinstance(s, str):
return unbox_numpy_null(numpy.load(s))
return s
global_load_cache_enabled = True
def load_cached_state(cachefile, args, quiet=False, throw=False):
"""
Resolves a state, which can be a filename or a dict-like object.
"""
if not global_load_cache_enabled or cachefile is None:
return None
try:
if isinstance(cachefile, dict):
dat = cachefile
cachefile = "state" # for printed messages
else:
dat = unbox_numpy_null(numpy.load(cachefile))
for a, v in args.items():
if a not in dat or dat[a] != v:
if not quiet:
print("%s %s changed from %s to %s" % (cachefile, a, dat[a], v))
return None
except (FileNotFoundError, ValueError) as e:
if throw:
raise e
return None
else:
if not quiet:
print("Loading cached %s" % cachefile)
return dat
def save_cached_state(cachefile, obj, args):
"""
Saves the state_dict of the given object in a dict or npz file.
"""
if cachefile is None:
return
dat = obj.state_dict()
for a, v in args.items():
if a in dat:
assert dat[a] == v
dat[a] = v
if isinstance(cachefile, dict):
cachefile.clear()
cachefile.update(dat)
else:
os.makedirs(os.path.dirname(cachefile), exist_ok=True)
numpy.savez(cachefile, **box_numpy_null(dat))
class FixedSubsetSampler(Sampler):
"""Represents a fixed sequence of data set indices.
Subsets can be created by specifying a subset of output indexes.
"""
def __init__(self, samples):
self.samples = samples
def __iter__(self):
return iter(self.samples)
def __len__(self):
return len(self.samples)
def __getitem__(self, key):
return self.samples[key]
def subset(self, new_subset):
return FixedSubsetSampler(self.dereference(new_subset))
def dereference(self, indices):
"""
Translate output sample indices (small numbers indexing the sample)
to input sample indices (larger number indexing the original full set)
"""
return [self.samples[i] for i in indices]
class FixedRandomSubsetSampler(FixedSubsetSampler):
"""Samples a fixed number of samples from the dataset, deterministically.
Arguments:
data_source,
sample_size,
seed (optional)
"""
def __init__(self, data_source, start=None, end=None, seed=1):
rng = random.Random(seed)
shuffled = list(range(len(data_source)))
rng.shuffle(shuffled)
self.data_source = data_source
super(FixedRandomSubsetSampler, self).__init__(shuffled[start:end])
def class_subset(self, class_filter):
"""
Returns only the subset matching the given rule.
"""
if isinstance(class_filter, int):
def rule(d):
return d[1] == class_filter
else:
rule = class_filter
return self.subset(
[i for i, j in enumerate(self.samples) if rule(self.data_source[j])]
)
def make_loader(
dataset, sample_size=None, batch_size=1, sampler=None, random_sample=None, **kwargs
):
"""Utility for creating a dataloader on fixed sample subset."""
import typing
if isinstance(dataset, typing.Callable):
# To support deferred dataset loading, support passing a factory
# that creates the dataset when called.
dataset = dataset()
if isinstance(dataset, torch.Tensor):
# The dataset can be a simple tensor.
dataset = torch.utils.data.TensorDataset(dataset)
if sample_size is not None:
assert sampler is None, "sampler cannot be specified with sample_size"
if sample_size > len(dataset):
print(
"Warning: sample size %d > dataset size %d"
% (sample_size, len(dataset))
)
sample_size = len(dataset)
if random_sample is None:
sampler = FixedSubsetSampler(list(range(sample_size)))
else:
sampler = FixedRandomSubsetSampler(
dataset, seed=random_sample, end=sample_size
)
return torch.utils.data.DataLoader(
dataset, sampler=sampler, batch_size=batch_size, **kwargs
)
# Unit Tests
def _unit_test():
import warnings
warnings.filterwarnings("error")
import argparse
import random
import shutil
import tempfile
import time
parser = argparse.ArgumentParser(description="Test things out")
parser.add_argument("--mode", default="cpu", help="cpu or cuda")
parser.add_argument("--test_size", type=int, default=1000000)
args = parser.parse_args()
testdir = tempfile.mkdtemp()
batch_size = random.randint(500, 1500)
# Test NaNboxing.
assert numpy.isnan(null_numpy_value)
assert is_null_numpy_value(null_numpy_value)
assert not is_null_numpy_value(numpy.nan)
# Test Covariance
goal = torch.tensor(numpy.random.RandomState(1).standard_normal(10 * 10)).view(
10, 10
)
data = (
torch.tensor(numpy.random.RandomState(2).standard_normal(args.test_size * 10))
.view(args.test_size, 10)
.mm(goal)
)
data += torch.randn(1, 10) * 999
dcov = data.t().cov()
dcorr = data.t().corrcoef()
rcov = Covariance()
rcov.add(data) # All one batch
assert (rcov.covariance() - dcov).abs().max() < 1e-16
cs = CombinedStat(cov=Covariance(), xcov=CrossCovariance())
ds = torch.utils.data.TensorDataset(data)
for [a] in tally(cs, ds, batch_size=9876):
cs.cov.add(a)
cs.xcov.add(a[:, :3], a[:, 3:])
assert (data.mean(0) - cs.cov.mean()).abs().max() < 1e-12
assert (dcov - cs.cov.covariance()).abs().max() < 2e-12
assert (dcov[:3, 3:] - cs.xcov.covariance()).abs().max() < 1e-12
assert (dcov.diagonal() - torch.cat(cs.xcov.variance())).abs().max() < 1e-12
assert (dcorr - cs.cov.correlation()).abs().max() < 2e-12
# Test CrossCovariance and CrossIoU
fn = f"{testdir}/cross_cache.npz"
ds = torch.utils.data.TensorDataset(
(
torch.arange(args.test_size)[:, None] % torch.arange(1, 6)[None, :] == 0
).double(),
(
torch.arange(args.test_size)[:, None] % torch.arange(5, 8)[None, :] == 0
).double(),
)
c = CombinedStat(c=CrossCovariance(), iou=CrossIoU())
riou = IoU()
count = 0
for [a, b] in tally(c, ds, cache=fn, batch_size=100):
count += 1
c.add(a, b)
riou.add(torch.cat([a, b], dim=1))
assert count == -(-args.test_size // 100)
cor = c.c.correlation()
iou = c.iou.iou()
assert cor.shape == iou.shape == (5, 3)
assert iou[4, 0] == 1.0
assert abs(iou[0, 2] + (-args.test_size // 7 / float(args.test_size))) < 1e-6
assert abs(cor[4, 0] - 1.0) < 1e-2
assert abs(cor[0, 2] - 0.0) < 1e-6
assert all((riou.iou()[:5, -3:] == iou).view(-1))
assert all(riou.iou().diagonal(0) == 1)
c = CombinedStat(c=CrossCovariance(), iou=CrossIoU())
count = 0
for [a, b] in tally(c, ds, cache=fn, batch_size=10):
count += 1
c.add(a, b)
assert count == 0
assert all((c.c.correlation() == cor).view(-1))
assert all((c.iou.iou() == iou).view(-1))
# Test Concatantaion, Mean, Bincount and tally.
fn = f"{testdir}/series_cache.npz"
count = 0
ds = torch.utils.data.TensorDataset(torch.arange(args.test_size))
c = CombinedStat(s=History(), m=Mean(), b=Bincount())
for [b] in tally(c, ds, cache=fn, batch_size=batch_size):
count += 1
c.add(b)
assert count == -(-args.test_size // batch_size)
assert len(c.s.history()) == args.test_size
assert c.s.history()[-1] == args.test_size - 1
assert all(c.s.history() == ds.tensors[0])
assert all(c.b.bincount() == torch.ones(args.test_size))
assert c.m.mean() == float(args.test_size - 1) / 2.0
c2 = CombinedStat(s=History(), m=Mean(), b=Bincount())
batches = tally(c2, ds, cache=fn)
assert len(c2.s.history()) == args.test_size
assert all(c2.s.history() == c.s.history())
assert all(c2.b.bincount() == torch.ones(args.test_size))
assert c2.m.mean() == c.m.mean()
count = 0
for b in batches:
count += 1
assert count == 0 # Shouldn't do anything when it's cached
# An adverarial case: we keep finding more numbers in the middle
# as the stream goes on.
amount = args.test_size
quantiles = 1000
data = numpy.arange(float(amount))
data[1::2] = data[-1::-2] + (len(data) - 1)
data /= 2
depth = 50
alldata = data[:, None] + (numpy.arange(depth) * amount)[None, :]
actual_sum = torch.FloatTensor(numpy.sum(alldata * alldata, axis=0))
amt = amount // depth
for r in range(depth):
numpy.random.shuffle(alldata[r * amt : r * amt + amt, r])
if args.mode == "cuda":
alldata = torch.cuda.FloatTensor(alldata)
device = torch.device("cuda")
else:
alldata = torch.FloatTensor(alldata)
device = None
starttime = time.time()
cs = CombinedStat(
qc=Quantile(),
m=Mean(),
v=Variance(),
c=Covariance(),
s=SecondMoment(),
t=TopK(),
i=IoU(),
)
# Feed data in little batches
i = 0
while i < len(alldata):
batch_size = numpy.random.randint(1000)
cs.add(alldata[i : i + batch_size])
i += batch_size
# Test state dict
saved = cs.state_dict()
# numpy.savez(f'{testdir}/saved.npz', **box_numpy_null(saved))
# saved = unbox_numpy_null(numpy.load(f'{testdir}/saved.npz'))
cs.save(f"{testdir}/saved.npz")
loaded = unbox_numpy_null(numpy.load(f"{testdir}/saved.npz"))
assert set(loaded.keys()) == set(saved.keys())
# Restore using state=saved in constructor.
cs2 = CombinedStat(
qc=Quantile(),
m=Mean(),
v=Variance(),
c=Covariance(),
s=SecondMoment(),
t=TopK(),
i=IoU(),
state=saved,
)
# saved = unbox_numpy_null(numpy.load(f'{testdir}/saved.npz'))
assert not cs2.qc.device.type == "cuda"
cs2.to_(device)
# alldata = alldata.cpu()
cs2.add(alldata)
actual_sum *= 2
# print(abs(alldata.mean(0) - cs2.m.mean()) / alldata.mean())
assert all(abs(alldata.mean(0) - cs2.m.mean()) / alldata.mean() < 1e-5)
assert all(abs(alldata.mean(0) - cs2.v.mean()) / alldata.mean() < 1e-5)
assert all(abs(alldata.mean(0) - cs2.c.mean()) / alldata.mean() < 1e-5)
# print(abs(alldata.var(0) - cs2.v.variance()) / alldata.var(0))
assert all(abs(alldata.var(0) - cs2.v.variance()) / alldata.var(0) < 1e-3)
assert all(abs(alldata.var(0) - cs2.c.variance()) / alldata.var(0) < 1e-2)
# print(abs(alldata.std(0) - cs2.v.stdev()) / alldata.std(0))
assert all(abs(alldata.std(0) - cs2.v.stdev()) / alldata.std(0) < 1e-4)
# print(abs(alldata.std(0) - cs2.c.stdev()) / alldata.std(0))
assert all(abs(alldata.std(0) - cs2.c.stdev()) / alldata.std(0) < 2e-3)
moment = (alldata.t() @ alldata) / len(alldata)
# print(abs(moment - cs2.s.moment()) / moment.abs())
assert all((abs(moment - cs2.s.moment()) / moment.abs()).view(-1) < 1e-2)
assert all(alldata.max(dim=0)[0] == cs2.t.topk()[0][:, 0])
assert cs2.i.iou()[0, 0] == 1
assert all((cs2.i.iou()[1:, 1:] == 1).view(-1))
assert all(cs2.i.iou()[1:, 0] < 1)
assert all(cs2.i.iou()[1:, 0] == cs2.i.iou()[0, 1:])
# Restore using cs.load() method.
cs = CombinedStat(
qc=Quantile(),
m=Mean(),
v=Variance(),
c=Covariance(),
s=SecondMoment(),
t=TopK(),
i=IoU(),
)
cs.load(f"{testdir}/saved.npz")
assert not cs.qc.device.type == "cuda"
cs.to_(device)
cs.add(alldata)
# actual_sum *= 2
# print(abs(alldata.mean(0) - cs.m.mean()) / alldata.mean())
assert all(abs(alldata.mean(0) - cs.m.mean()) / alldata.mean() < 1e-5)
assert all(abs(alldata.mean(0) - cs.v.mean()) / alldata.mean() < 1e-5)
assert all(abs(alldata.mean(0) - cs.c.mean()) / alldata.mean() < 1e-5)
# print(abs(alldata.var(0) - cs.v.variance()) / alldata.var(0))
assert all(abs(alldata.var(0) - cs.v.variance()) / alldata.var(0) < 1e-3)
assert all(abs(alldata.var(0) - cs.c.variance()) / alldata.var(0) < 1e-2)
# print(abs(alldata.std(0) - cs.v.stdev()) / alldata.std(0))
assert all(abs(alldata.std(0) - cs.v.stdev()) / alldata.std(0) < 1e-4)
# print(abs(alldata.std(0) - cs.c.stdev()) / alldata.std(0))
assert all(abs(alldata.std(0) - cs.c.stdev()) / alldata.std(0) < 2e-3)
moment = (alldata.t() @ alldata) / len(alldata)
# print(abs(moment - cs.s.moment()) / moment.abs())
assert all((abs(moment - cs.s.moment()) / moment.abs()).view(-1) < 1e-2)
assert all(alldata.max(dim=0)[0] == cs.t.topk()[0][:, 0])
assert cs.i.iou()[0, 0] == 1
assert all((cs.i.iou()[1:, 1:] == 1).view(-1))
assert all(cs.i.iou()[1:, 0] < 1)
assert all(cs.i.iou()[1:, 0] == cs.i.iou()[0, 1:])
# Randomized quantile test
qc = cs.qc
ro = qc.readout(1001).cpu()
endtime = time.time()
gt = (
torch.linspace(0, amount, quantiles + 1)[None, :]
+ (torch.arange(qc.depth, dtype=torch.float) * amount)[:, None]
)
maxreldev = torch.max(torch.abs(ro - gt) / amount) * quantiles
print("Randomized quantile test results:")
print("Maximum relative deviation among %d perentiles: %f" % (quantiles, maxreldev))
minerr = torch.max(
torch.abs(
qc.minmax().cpu()[:, 0] - torch.arange(qc.depth, dtype=torch.float) * amount
)
)
maxerr = torch.max(
torch.abs(
(qc.minmax().cpu()[:, -1] + 1)
- (torch.arange(qc.depth, dtype=torch.float) + 1) * amount
)
)
print("Minmax error %f, %f" % (minerr, maxerr))
interr = torch.max(
torch.abs(qc.integrate(lambda x: x * x).cpu() - actual_sum) / actual_sum
)
print("Integral error: %f" % interr)
medianerr = torch.max(
torch.abs(qc.median() - alldata.median(0)[0]) / alldata.median(0)[0]
).cpu()
print("Median error: %f" % medianerr)
meanerr = torch.max(torch.abs(qc.mean() - alldata.mean(0)) / alldata.mean(0)).cpu()
print("Mean error: %f" % meanerr)
varerr = torch.max(torch.abs(qc.variance() - alldata.var(0)) / alldata.var(0)).cpu()
print("Variance error: %f" % varerr)
counterr = (
(qc.integrate(lambda x: torch.ones(x.shape[-1]).cpu()) - qc.size())
/ (0.0 + qc.size())
).item()
print("Count error: %f" % counterr)
print("Time %f" % (endtime - starttime))
# Algorithm is randomized, so some of these will fail with low probability.
assert maxreldev < 1.0
assert minerr == 0.0
assert maxerr == 0.0
assert interr < 0.01
assert abs(counterr) < 0.001
shutil.rmtree(testdir, ignore_errors=True)
print("OK")
if __name__ == "__main__":
_unit_test()
|