import gradio as gr from collections import defaultdict from transformers import BertTokenizer, BertForMaskedLM import jsonlines import torch from src.modeling_bert import EXBertForMaskedLM from higher.patch import monkeypatch as make_functional # from src.models.one_shot_learner import OneShotLearner ### load KGE model edit_origin_model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path="ChancesYuan/KGEditor_Edit_Test") edit_ex_model = EXBertForMaskedLM.from_pretrained(pretrained_model_name_or_path="ChancesYuan/KGEditor_Edit_Test") edit_learner = torch.load("./learner_checkpoint/edit/learner_params.pt", map_location=torch.device('cpu')) add_learner = torch.load("./learner_checkpoint/add/learner_params.pt", map_location=torch.device('cpu')) add_origin_model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path="ChancesYuan/KGEditor_Add_Test") add_ex_model = EXBertForMaskedLM.from_pretrained(pretrained_model_name_or_path="ChancesYuan/KGEditor_Add_Test") ### init inputs ent_name2id = defaultdict(str) id2ent_name = defaultdict(str) rel_name2id = defaultdict(str) id2ent_text = defaultdict(str) id2rel_text = defaultdict(str) corrupt_triple = defaultdict(list) ### init tokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') add_tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path='zjunlp/KGEditor', subfolder="E-FB15k237") def init_triple_input(): global ent2token global ent2id global id2ent global rel2token with open("./dataset/fb15k237/relations.txt", "r") as f: lines = f.readlines() relations = [] for line in lines: relations.append(line.strip().split('\t')[0]) rel2token = {ent: f"[RELATION_{i}]" for i, ent in enumerate(relations)} with open("./dataset/fb15k237/entity2text.txt", "r") as f: for line in f.readlines(): id, name = line.rstrip('\n').split('\t') ent_name2id[name] = id id2ent_name[id] = name with open("./dataset/fb15k237/relation2text.txt", "r") as f: for line in f.readlines(): id, name = line.rstrip('\n').split('\t') rel_name2id[name] = id id2rel_text[id] = name with open("./dataset/fb15k237/entity2textlong.txt", "r") as f: for line in f.readlines(): id, text = line.rstrip('\n').split('\t') id2ent_text[id] = text.replace("\\n", " ").replace("\\", "") entities = list(id2ent_text.keys()) ent2token = {ent: f"[ENTITY_{i}]" for i, ent in enumerate(entities)} ent2id = {ent: i for i, ent in enumerate(entities)} id2ent = {i: ent for i, ent in enumerate(entities)} with jsonlines.open("./dataset/fb15k237/edit_test.jsonl") as f: lines = [] for d in f: corrupt_triple[" ".join(d["ori"])] = d["cor"] def solve(triple, alter_label, edit_task): print(triple, alter_label) h, r, t = triple.split("|") if h == "[MASK]": text_a = "[MASK]" text_b = id2rel_text[r] + " " + rel2token[r] text_c = ent2token[ent_name2id[t]] + " " + id2ent_text[ent_name2id[t]] origin_label = corrupt_triple[" ".join([ent_name2id[alter_label], r, ent_name2id[t]])][0] if edit_task else ent_name2id[alter_label] else: text_a = ent2token[ent_name2id[h]] # text_b = id2rel_text[r] + "[PAD]" text_b = id2rel_text[r] + " " + rel2token[r] text_c = "[MASK]" + " " + id2ent_text[ent_name2id[h]] origin_label = corrupt_triple[" ".join([ent_name2id[h], r, ent_name2id[alter_label]])][2] if edit_task else ent_name2id[alter_label] if text_a == "[MASK]": input_text_a = tokenizer.sep_token.join(["[MASK]", id2rel_text[r] + "[PAD]"]) input_text_b = "[PAD]" + " " + id2ent_text[ent_name2id[t]] else: input_text_a = "[PAD] " input_text_b = tokenizer.sep_token.join([id2rel_text[r] + "[PAD]", "[MASK]" + " " + id2ent_text[ent_name2id[h]]]) cond_inputs_text = "{} >> {} || {}".format( add_tokenizer.added_tokens_decoder[ent2id[origin_label] + len(tokenizer)], add_tokenizer.added_tokens_decoder[ent2id[ent_name2id[alter_label]] + len(tokenizer)], input_text_a + input_text_b ) inputs = tokenizer( f"{text_a} [SEP] {text_b} [SEP] {text_c}", truncation="longest_first", max_length=64, padding="longest", add_special_tokens=True, ) edit_inputs = tokenizer( input_text_a, input_text_b, truncation="longest_first", max_length=64, padding="longest", add_special_tokens=True, ) cond_inputs = tokenizer( cond_inputs_text, truncation=True, max_length=64, padding="max_length", add_special_tokens=True, ) inputs = { "input_ids": torch.tensor(inputs["input_ids"]).unsqueeze(dim=0), "attention_mask": torch.tensor(inputs["attention_mask"]).unsqueeze(dim=0), "token_type_ids": torch.tensor(inputs["token_type_ids"]).unsqueeze(dim=0) } edit_inputs = { "input_ids": torch.tensor(edit_inputs["input_ids"]).unsqueeze(dim=0), "attention_mask": torch.tensor(edit_inputs["attention_mask"]).unsqueeze(dim=0), "token_type_ids": torch.tensor(edit_inputs["token_type_ids"]).unsqueeze(dim=0) } cond_inputs = { "input_ids": torch.tensor(cond_inputs["input_ids"]).unsqueeze(dim=0), "attention_mask": torch.tensor(cond_inputs["attention_mask"]).unsqueeze(dim=0), "token_type_ids": torch.tensor(cond_inputs["token_type_ids"]).unsqueeze(dim=0) } return inputs, cond_inputs, edit_inputs def get_logits_orig_params_dict(inputs, cond_inputs, alter_label, ex_model, learner): with torch.enable_grad(): logits = ex_model.eval()( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], ).logits # print(logits.shape) # logits_orig, logit_for_grad, _ = logits.split([ # len(inputs["input_ids"]) - 1, # 1, # 0, # ]) input_ids = inputs['input_ids'] _, mask_idx = (input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True) mask_logits = logits[:, mask_idx, 30522:45473].squeeze(dim=0) grads = torch.autograd.grad( # cross_entropy torch.nn.functional.cross_entropy( mask_logits[-1:, :], torch.tensor([alter_label]), reduction="none", ).mean(-1), ex_model.parameters(), ) grads = { name: grad for (name, _), grad in zip(ex_model.named_parameters(), grads) } # cond_inputs里面有pad params_dict = learner( cond_inputs["input_ids"][-1:], cond_inputs["attention_mask"][-1:], grads=grads, ) return params_dict def edit_process(edit_input, alter_label): inputs, cond_inputs, edit_inputs = solve(edit_input, alter_label, edit_task=True) _, mask_idx = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True) logits = edit_origin_model(**inputs).logits[:, :, 30522:45473].squeeze() logits = logits[mask_idx, :] ### origin output _, origin_entity_order = torch.sort(logits, dim=1, descending=True) origin_entity_order = origin_entity_order.squeeze(dim=0) origin_top3 = [id2ent_name[id2ent[origin_entity_order[i].item()]] for i in range(3)] ### edit output fmodel = make_functional(edit_ex_model).eval() params_dict = get_logits_orig_params_dict(inputs, cond_inputs, ent2id[ent_name2id[alter_label]], edit_ex_model, edit_learner) edit_logits = fmodel( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], # add delta theta params=[ params_dict.get(n, 0) + p for n, p in edit_ex_model.named_parameters() ], ).logits[:, :, 30522:45473].squeeze() edit_logits = edit_logits[mask_idx, :] _, edit_entity_order = torch.sort(edit_logits, dim=1, descending=True) edit_entity_order = edit_entity_order.squeeze(dim=0) edit_top3 = [id2ent_name[id2ent[edit_entity_order[i].item()]] for i in range(3)] return "\n".join(origin_top3), "\n".join(edit_top3) def add_process(edit_input, alter_label): inputs, cond_inputs, add_inputs = solve(edit_input, alter_label, edit_task=False) _, mask_idx = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True) logits = add_origin_model(**inputs).logits[:, :, 30522:45473].squeeze() logits = logits[mask_idx, :] ### origin output _, origin_entity_order = torch.sort(logits, dim=1, descending=True) origin_entity_order = origin_entity_order.squeeze(dim=0) origin_top3 = [id2ent_name[id2ent[origin_entity_order[i].item()]] for i in range(3)] ### add output fmodel = make_functional(add_ex_model).eval() params_dict = get_logits_orig_params_dict(inputs, cond_inputs, ent2id[ent_name2id[alter_label]], add_ex_model, add_learner) add_logits = fmodel( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], # add delta theta params=[ params_dict.get(n, 0) + p for n, p in add_ex_model.named_parameters() ], ).logits[:, :, 30522:45473].squeeze() add_logits = add_logits[mask_idx, :] _, add_entity_order = torch.sort(add_logits, dim=1, descending=True) add_entity_order = add_entity_order.squeeze(dim=0) add_top3 = [id2ent_name[id2ent[add_entity_order[i].item()]] for i in range(3)] return "\n".join(origin_top3), "\n".join(add_top3) with gr.Blocks() as demo: init_triple_input() ### example # edit_process("[MASK]|/people/person/profession|Jack Black", "Kellie Martin") add_process("Red Skelton|/people/person/places_lived./people/place_lived/location|[MASK]", "Palm Springs") gr.Markdown("# KGE Editing") # 多个tab with gr.Tabs(): with gr.TabItem("E-FB15k237"): with gr.Row(): with gr.Column(): edit_input = gr.Textbox(label="Input", lines=1, placeholder="Mask triple input") alter_label = gr.Textbox(label="Alter Entity", lines=1, placeholder="Entity Name") edit_button = gr.Button("Edit") with gr.Column(): origin_output = gr.Textbox(label="Before Edit", lines=3, placeholder="") edit_output = gr.Textbox(label="After Edit", lines=3, placeholder="") gr.Examples( examples=[["[MASK]|/people/person/profession|Jack Black", "Kellie Martin"], ["[MASK]|/people/person/nationality|United States of America", "Mark Mothersbaugh"]], inputs=[edit_input, alter_label], outputs=[origin_output, edit_output], fn=edit_process, cache_examples=True, ) with gr.TabItem("A-FB15k237"): with gr.Row(): with gr.Column(): add_input = gr.Textbox(label="Input", lines=1, placeholder="New triple input") inductive_entity = gr.Textbox(label="Inductive Entity", lines=1, placeholder="Entity Name") add_button = gr.Button("Add") with gr.Column(): add_origin_output = gr.Textbox(label="Origin Results", lines=3, placeholder="") add_output = gr.Textbox(label="Add Results", lines=3, placeholder="") gr.Examples( examples=[["Jane Wyman|/people/person/places_lived./people/place_lived/location|[MASK]", "Palm Springs"], ["Red Skelton|/people/person/places_lived./people/place_lived/location|[MASK]", "Palm Springs"]], inputs=[add_input, inductive_entity], outputs=[add_origin_output, add_output], fn=add_process, cache_examples=True, ) edit_button.click(fn=edit_process, inputs=[edit_input, alter_label], outputs=[origin_output, edit_output]) add_button.click(fn=add_process, inputs=[add_input, inductive_entity], outputs=[add_origin_output, add_output]) demo.launch()