MKG_Analogy / app.py
flow3rdown's picture
test
3fda9db
raw
history blame
1.93 kB
import gradio as gr
def single_inference():
pass
def blended_inference():
pass
TITLE = """MKG Analogy"""
with gr.Blocks() as block:
with gr.Column(elem_id="col-container"):
gr.HTML(TITLE)
with gr.Tab("Single Analogical Reasoning"):
with gr.Row():
gr.Markdown(""" $(I_h, I_t) : (T_q, ?)$
""")
with gr.Column():
head_image = gr.Image(type='pil', label="Head Image")
head_ent = gr.Textbox(lines=1, label="Head Entity")
with gr.Column():
tail_image = gr.Image(type='pil', label="Tail Image")
tail_ent = gr.Textbox(lines=1, label="Tail Entity")
with gr.Column():
question_text = gr.Textbox(lines=1, label="Question Name")
question_ent = gr.Textbox(lines=1, label="Question Entity")
submit_btn = gr.Button("Submit")
output_text = gr.Textbox(label="Output")
# examples=[['example01.jpg', MODELS[0], 'best'], ['example02.jpg', MODELS[0], 'best']]
# ex = gr.Examples(
# examples=examples,
# fn=image_to_prompt,
# inputs=[input_image, input_model, input_mode],
# outputs=[output_text, share_button, community_icon, loading_icon],
# cache_examples=True,
# run_on_click=True
# )
# ex.dataset.headers = [""]
with gr.Tab("Blended Analogical Reasoning"):
pass
# gr.HTML(ARTICLE)
# submit_btn.click(
# fn=image_to_prompt,
# inputs=[input_image, input_model, input_mode],
# outputs=[output_text, share_button, community_icon, loading_icon]
# )
# share_button.click(None, [], [], _js=None)
block.queue(max_size=64).launch(enable_queue=True)