import argparse import itertools import json import os import random import time from functools import partial import torch from pycocoevalcap.eval import COCOEvalCap from pycocotools.coco import COCO from tqdm import tqdm from transformers import AutoModelForCausalLM, AutoTokenizer ds_collections = { 'flickr': { 'train': 'data/flickr30k/flickr30k_karpathy_test.json', 'test': 'data/flickr30k/flickr30k_karpathy_test.json', }, 'nocaps': { 'train': '', 'test': 'data/nocaps/nocaps_val.json', }, } class CaptionDataset(torch.utils.data.Dataset): def __init__(self, train, test, prompt, few_shot=0): self.images = json.load(open(test))['images'] self.prompt = prompt self.few_shot = few_shot if few_shot > 0: self.train = json.load(open(train))['annotations'] def __len__(self): return len(self.images) def __getitem__(self, idx): image_id, image_path = self.images[idx]['id'], self.images[idx][ 'image'] few_shot_prompt = '' if self.few_shot > 0: few_shot_samples = random.sample(self.train, self.few_shot) for sample in few_shot_samples: few_shot_prompt += self.prompt.format( sample['image']) + f" {sample['caption']}" return { 'image_id': image_id, 'input_text': few_shot_prompt + self.prompt.format(image_path) } def collate_fn(inputs, tokenizer): image_ids = [_['image_id'] for _ in inputs] input_texts = [_['input_text'] for _ in inputs] input_tokens = tokenizer(input_texts, return_tensors='pt', padding='longest') return image_ids, input_tokens.input_ids, input_tokens.attention_mask class InferenceSampler(torch.utils.data.sampler.Sampler): def __init__(self, size): self._size = int(size) assert size > 0 self._rank = torch.distributed.get_rank() self._world_size = torch.distributed.get_world_size() self._local_indices = self._get_local_indices(size, self._world_size, self._rank) @staticmethod def _get_local_indices(total_size, world_size, rank): shard_size = total_size // world_size left = total_size % world_size shard_sizes = [shard_size + int(r < left) for r in range(world_size)] begin = sum(shard_sizes[:rank]) end = min(sum(shard_sizes[:rank + 1]), total_size) return range(begin, end) def __iter__(self): yield from self._local_indices def __len__(self): return len(self._local_indices) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', type=str, default='') parser.add_argument('--dataset', type=str, default='') parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--num-workers', type=int, default=1) parser.add_argument('--few-shot', type=int, default=0) parser.add_argument('--seed', type=int, default=0) args = parser.parse_args() torch.distributed.init_process_group( backend='nccl', world_size=int(os.getenv('WORLD_SIZE', '1')), rank=int(os.getenv('RANK', '0')), ) torch.cuda.set_device(torch.distributed.get_rank()) prompt = '{}Describe the image in English:' model = AutoModelForCausalLM.from_pretrained( args.checkpoint, device_map='cuda', trust_remote_code=True).eval() tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True) random.seed(args.seed) dataset = CaptionDataset( train=ds_collections[args.dataset]['train'], test=ds_collections[args.dataset]['test'], tokenizer=tokenizer, prompt=prompt, few_shot=args.few_shot, ) coco_karpathy_test_loader = torch.utils.data.DataLoader( dataset=dataset, sampler=InferenceSampler(len(dataset)), batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True, drop_last=False, collate_fn=partial(collate_fn, tokenizer=tokenizer), ) image_ids = [] captions = [] for _, (ids, input_ids, attention_mask) in tqdm(enumerate(coco_karpathy_test_loader)): pred = model.generate( input_ids=input_ids.cuda(), attention_mask=attention_mask.cuda(), do_sample=False, num_beams=1, max_new_tokens=30, min_new_tokens=8, length_penalty=0, num_return_sequences=1, use_cache=True, pad_token_id=tokenizer.eod_id, eos_token_id=tokenizer.eod_id, ) image_ids.extend(ids) captions.extend([ tokenizer.decode(_[input_ids.size(1):].cpu(), skip_special_tokens=True).strip() for _ in pred ]) torch.distributed.barrier() world_size = torch.distributed.get_world_size() merged_ids = [None for _ in range(world_size)] merged_captions = [None for _ in range(world_size)] torch.distributed.all_gather_object(merged_ids, image_ids) torch.distributed.all_gather_object(merged_captions, captions) merged_ids = [_ for _ in itertools.chain.from_iterable(merged_ids)] merged_captions = [ _ for _ in itertools.chain.from_iterable(merged_captions) ] if torch.distributed.get_rank() == 0: results = [] for image_id, caption in zip(merged_ids, merged_captions): results.append({ 'image_id': int(image_id), 'caption': caption, }) time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime()) results_file = f'{args.dataset}_{time_prefix}.json' json.dump(results, open(results_file, 'w')) coco = COCO(ds_collections[args.dataset]['test']) coco_result = coco.loadRes(results_file) coco_eval = COCOEvalCap(coco, coco_result) coco_eval.evaluate() print(coco_eval.eval.items()) torch.distributed.barrier()