Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
""" | |
Reference: | |
- [graphrag](https://github.com/microsoft/graphrag) | |
""" | |
from typing import Any | |
import numpy as np | |
import networkx as nx | |
from graphrag.leiden import stable_largest_connected_component | |
class NodeEmbeddings: | |
"""Node embeddings class definition.""" | |
nodes: list[str] | |
embeddings: np.ndarray | |
def embed_nod2vec( | |
graph: nx.Graph | nx.DiGraph, | |
dimensions: int = 1536, | |
num_walks: int = 10, | |
walk_length: int = 40, | |
window_size: int = 2, | |
iterations: int = 3, | |
random_seed: int = 86, | |
) -> NodeEmbeddings: | |
"""Generate node embeddings using Node2Vec.""" | |
# generate embedding | |
lcc_tensors = gc.embed.node2vec_embed( # type: ignore | |
graph=graph, | |
dimensions=dimensions, | |
window_size=window_size, | |
iterations=iterations, | |
num_walks=num_walks, | |
walk_length=walk_length, | |
random_seed=random_seed, | |
) | |
return NodeEmbeddings(embeddings=lcc_tensors[0], nodes=lcc_tensors[1]) | |
def run(graph: nx.Graph, args: dict[str, Any]) -> NodeEmbeddings: | |
"""Run method definition.""" | |
if args.get("use_lcc", True): | |
graph = stable_largest_connected_component(graph) | |
# create graph embedding using node2vec | |
embeddings = embed_nod2vec( | |
graph=graph, | |
dimensions=args.get("dimensions", 1536), | |
num_walks=args.get("num_walks", 10), | |
walk_length=args.get("walk_length", 40), | |
window_size=args.get("window_size", 2), | |
iterations=args.get("iterations", 3), | |
random_seed=args.get("random_seed", 86), | |
) | |
pairs = zip(embeddings.nodes, embeddings.embeddings.tolist(), strict=True) | |
sorted_pairs = sorted(pairs, key=lambda x: x[0]) | |
return dict(sorted_pairs) |