Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Reference: | |
- [graphrag](https://github.com/microsoft/graphrag) | |
""" | |
import logging | |
import numbers | |
import re | |
import traceback | |
from dataclasses import dataclass | |
from typing import Any, Mapping, Callable | |
import tiktoken | |
from graphrag.graph_prompt import GRAPH_EXTRACTION_PROMPT, CONTINUE_PROMPT, LOOP_PROMPT | |
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements, clean_str | |
from rag.llm.chat_model import Base as CompletionLLM | |
import networkx as nx | |
from rag.utils import num_tokens_from_string | |
from timeit import default_timer as timer | |
DEFAULT_TUPLE_DELIMITER = "<|>" | |
DEFAULT_RECORD_DELIMITER = "##" | |
DEFAULT_COMPLETION_DELIMITER = "<|COMPLETE|>" | |
DEFAULT_ENTITY_TYPES = ["organization", "person", "location", "event", "time"] | |
ENTITY_EXTRACTION_MAX_GLEANINGS = 1 | |
class GraphExtractionResult: | |
"""Unipartite graph extraction result class definition.""" | |
output: nx.Graph | |
source_docs: dict[Any, Any] | |
class GraphExtractor: | |
"""Unipartite graph extractor class definition.""" | |
_llm: CompletionLLM | |
_join_descriptions: bool | |
_tuple_delimiter_key: str | |
_record_delimiter_key: str | |
_entity_types_key: str | |
_input_text_key: str | |
_completion_delimiter_key: str | |
_entity_name_key: str | |
_input_descriptions_key: str | |
_extraction_prompt: str | |
_summarization_prompt: str | |
_loop_args: dict[str, Any] | |
_max_gleanings: int | |
_on_error: ErrorHandlerFn | |
def __init__( | |
self, | |
llm_invoker: CompletionLLM, | |
prompt: str | None = None, | |
tuple_delimiter_key: str | None = None, | |
record_delimiter_key: str | None = None, | |
input_text_key: str | None = None, | |
entity_types_key: str | None = None, | |
completion_delimiter_key: str | None = None, | |
join_descriptions=True, | |
encoding_model: str | None = None, | |
max_gleanings: int | None = None, | |
on_error: ErrorHandlerFn | None = None, | |
): | |
"""Init method definition.""" | |
# TODO: streamline construction | |
self._llm = llm_invoker | |
self._join_descriptions = join_descriptions | |
self._input_text_key = input_text_key or "input_text" | |
self._tuple_delimiter_key = tuple_delimiter_key or "tuple_delimiter" | |
self._record_delimiter_key = record_delimiter_key or "record_delimiter" | |
self._completion_delimiter_key = ( | |
completion_delimiter_key or "completion_delimiter" | |
) | |
self._entity_types_key = entity_types_key or "entity_types" | |
self._extraction_prompt = prompt or GRAPH_EXTRACTION_PROMPT | |
self._max_gleanings = ( | |
max_gleanings | |
if max_gleanings is not None | |
else ENTITY_EXTRACTION_MAX_GLEANINGS | |
) | |
self._on_error = on_error or (lambda _e, _s, _d: None) | |
self.prompt_token_count = num_tokens_from_string(self._extraction_prompt) | |
# Construct the looping arguments | |
encoding = tiktoken.get_encoding(encoding_model or "cl100k_base") | |
yes = encoding.encode("YES") | |
no = encoding.encode("NO") | |
self._loop_args = {"logit_bias": {yes[0]: 100, no[0]: 100}, "max_tokens": 1} | |
def __call__( | |
self, texts: list[str], | |
prompt_variables: dict[str, Any] | None = None, | |
callback: Callable | None = None | |
) -> GraphExtractionResult: | |
"""Call method definition.""" | |
if prompt_variables is None: | |
prompt_variables = {} | |
all_records: dict[int, str] = {} | |
source_doc_map: dict[int, str] = {} | |
# Wire defaults into the prompt variables | |
prompt_variables = { | |
**prompt_variables, | |
self._tuple_delimiter_key: prompt_variables.get(self._tuple_delimiter_key) | |
or DEFAULT_TUPLE_DELIMITER, | |
self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key) | |
or DEFAULT_RECORD_DELIMITER, | |
self._completion_delimiter_key: prompt_variables.get( | |
self._completion_delimiter_key | |
) | |
or DEFAULT_COMPLETION_DELIMITER, | |
self._entity_types_key: ",".join( | |
prompt_variables.get(self._entity_types_key) or DEFAULT_ENTITY_TYPES | |
), | |
} | |
st = timer() | |
total = len(texts) | |
total_token_count = 0 | |
for doc_index, text in enumerate(texts): | |
try: | |
# Invoke the entity extraction | |
result, token_count = self._process_document(text, prompt_variables) | |
source_doc_map[doc_index] = text | |
all_records[doc_index] = result | |
total_token_count += token_count | |
if callback: callback(msg=f"{doc_index+1}/{total}, elapsed: {timer() - st}s, used tokens: {total_token_count}") | |
except Exception as e: | |
logging.exception("error extracting graph") | |
self._on_error( | |
e, | |
traceback.format_exc(), | |
{ | |
"doc_index": doc_index, | |
"text": text, | |
}, | |
) | |
output = self._process_results( | |
all_records, | |
prompt_variables.get(self._tuple_delimiter_key, DEFAULT_TUPLE_DELIMITER), | |
prompt_variables.get(self._record_delimiter_key, DEFAULT_RECORD_DELIMITER), | |
) | |
return GraphExtractionResult( | |
output=output, | |
source_docs=source_doc_map, | |
) | |
def _process_document( | |
self, text: str, prompt_variables: dict[str, str] | |
) -> str: | |
variables = { | |
**prompt_variables, | |
self._input_text_key: text, | |
} | |
token_count = 0 | |
text = perform_variable_replacements(self._extraction_prompt, variables=variables) | |
gen_conf = {"temperature": 0.3} | |
response = self._llm.chat(text, [], gen_conf) | |
token_count = num_tokens_from_string(text + response) | |
results = response or "" | |
history = [{"role": "system", "content": text}, {"role": "assistant", "content": response}] | |
# Repeat to ensure we maximize entity count | |
for i in range(self._max_gleanings): | |
text = perform_variable_replacements(CONTINUE_PROMPT, history=history, variables=variables) | |
history.append({"role": "user", "content": text}) | |
response = self._llm.chat("", history, gen_conf) | |
results += response or "" | |
# if this is the final glean, don't bother updating the continuation flag | |
if i >= self._max_gleanings - 1: | |
break | |
history.append({"role": "assistant", "content": response}) | |
history.append({"role": "user", "content": LOOP_PROMPT}) | |
continuation = self._llm.chat("", history, self._loop_args) | |
if continuation != "YES": | |
break | |
return results, token_count | |
def _process_results( | |
self, | |
results: dict[int, str], | |
tuple_delimiter: str, | |
record_delimiter: str, | |
) -> nx.Graph: | |
"""Parse the result string to create an undirected unipartite graph. | |
Args: | |
- results - dict of results from the extraction chain | |
- tuple_delimiter - delimiter between tuples in an output record, default is '<|>' | |
- record_delimiter - delimiter between records, default is '##' | |
Returns: | |
- output - unipartite graph in graphML format | |
""" | |
graph = nx.Graph() | |
for source_doc_id, extracted_data in results.items(): | |
records = [r.strip() for r in extracted_data.split(record_delimiter)] | |
for record in records: | |
record = re.sub(r"^\(|\)$", "", record.strip()) | |
record_attributes = record.split(tuple_delimiter) | |
if record_attributes[0] == '"entity"' and len(record_attributes) >= 4: | |
# add this record as a node in the G | |
entity_name = clean_str(record_attributes[1].upper()) | |
entity_type = clean_str(record_attributes[2].upper()) | |
entity_description = clean_str(record_attributes[3]) | |
if entity_name in graph.nodes(): | |
node = graph.nodes[entity_name] | |
if self._join_descriptions: | |
node["description"] = "\n".join( | |
list({ | |
*_unpack_descriptions(node), | |
entity_description, | |
}) | |
) | |
else: | |
if len(entity_description) > len(node["description"]): | |
node["description"] = entity_description | |
node["source_id"] = ", ".join( | |
list({ | |
*_unpack_source_ids(node), | |
str(source_doc_id), | |
}) | |
) | |
node["entity_type"] = ( | |
entity_type if entity_type != "" else node["entity_type"] | |
) | |
else: | |
graph.add_node( | |
entity_name, | |
entity_type=entity_type, | |
description=entity_description, | |
source_id=str(source_doc_id), | |
weight=1 | |
) | |
if ( | |
record_attributes[0] == '"relationship"' | |
and len(record_attributes) >= 5 | |
): | |
# add this record as edge | |
source = clean_str(record_attributes[1].upper()) | |
target = clean_str(record_attributes[2].upper()) | |
edge_description = clean_str(record_attributes[3]) | |
edge_source_id = clean_str(str(source_doc_id)) | |
weight = ( | |
float(record_attributes[-1]) | |
if isinstance(record_attributes[-1], numbers.Number) | |
else 1.0 | |
) | |
if source not in graph.nodes(): | |
graph.add_node( | |
source, | |
entity_type="", | |
description="", | |
source_id=edge_source_id, | |
weight=1 | |
) | |
if target not in graph.nodes(): | |
graph.add_node( | |
target, | |
entity_type="", | |
description="", | |
source_id=edge_source_id, | |
weight=1 | |
) | |
if graph.has_edge(source, target): | |
edge_data = graph.get_edge_data(source, target) | |
if edge_data is not None: | |
weight += edge_data["weight"] | |
if self._join_descriptions: | |
edge_description = "\n".join( | |
list({ | |
*_unpack_descriptions(edge_data), | |
edge_description, | |
}) | |
) | |
edge_source_id = ", ".join( | |
list({ | |
*_unpack_source_ids(edge_data), | |
str(source_doc_id), | |
}) | |
) | |
graph.add_edge( | |
source, | |
target, | |
weight=weight, | |
description=edge_description, | |
source_id=edge_source_id, | |
) | |
for node_degree in graph.degree: | |
graph.nodes[str(node_degree[0])]["rank"] = int(node_degree[1]) | |
return graph | |
def _unpack_descriptions(data: Mapping) -> list[str]: | |
value = data.get("description", None) | |
return [] if value is None else value.split("\n") | |
def _unpack_source_ids(data: Mapping) -> list[str]: | |
value = data.get("source_id", None) | |
return [] if value is None else value.split(", ") | |