ragflow / graphrag /graph_extractor.py
zxsipola123456's picture
Upload 769 files
ab2ded1 verified
raw
history blame
13.2 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Reference:
- [graphrag](https://github.com/microsoft/graphrag)
"""
import logging
import numbers
import re
import traceback
from dataclasses import dataclass
from typing import Any, Mapping, Callable
import tiktoken
from graphrag.graph_prompt import GRAPH_EXTRACTION_PROMPT, CONTINUE_PROMPT, LOOP_PROMPT
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements, clean_str
from rag.llm.chat_model import Base as CompletionLLM
import networkx as nx
from rag.utils import num_tokens_from_string
from timeit import default_timer as timer
DEFAULT_TUPLE_DELIMITER = "<|>"
DEFAULT_RECORD_DELIMITER = "##"
DEFAULT_COMPLETION_DELIMITER = "<|COMPLETE|>"
DEFAULT_ENTITY_TYPES = ["organization", "person", "location", "event", "time"]
ENTITY_EXTRACTION_MAX_GLEANINGS = 1
@dataclass
class GraphExtractionResult:
"""Unipartite graph extraction result class definition."""
output: nx.Graph
source_docs: dict[Any, Any]
class GraphExtractor:
"""Unipartite graph extractor class definition."""
_llm: CompletionLLM
_join_descriptions: bool
_tuple_delimiter_key: str
_record_delimiter_key: str
_entity_types_key: str
_input_text_key: str
_completion_delimiter_key: str
_entity_name_key: str
_input_descriptions_key: str
_extraction_prompt: str
_summarization_prompt: str
_loop_args: dict[str, Any]
_max_gleanings: int
_on_error: ErrorHandlerFn
def __init__(
self,
llm_invoker: CompletionLLM,
prompt: str | None = None,
tuple_delimiter_key: str | None = None,
record_delimiter_key: str | None = None,
input_text_key: str | None = None,
entity_types_key: str | None = None,
completion_delimiter_key: str | None = None,
join_descriptions=True,
encoding_model: str | None = None,
max_gleanings: int | None = None,
on_error: ErrorHandlerFn | None = None,
):
"""Init method definition."""
# TODO: streamline construction
self._llm = llm_invoker
self._join_descriptions = join_descriptions
self._input_text_key = input_text_key or "input_text"
self._tuple_delimiter_key = tuple_delimiter_key or "tuple_delimiter"
self._record_delimiter_key = record_delimiter_key or "record_delimiter"
self._completion_delimiter_key = (
completion_delimiter_key or "completion_delimiter"
)
self._entity_types_key = entity_types_key or "entity_types"
self._extraction_prompt = prompt or GRAPH_EXTRACTION_PROMPT
self._max_gleanings = (
max_gleanings
if max_gleanings is not None
else ENTITY_EXTRACTION_MAX_GLEANINGS
)
self._on_error = on_error or (lambda _e, _s, _d: None)
self.prompt_token_count = num_tokens_from_string(self._extraction_prompt)
# Construct the looping arguments
encoding = tiktoken.get_encoding(encoding_model or "cl100k_base")
yes = encoding.encode("YES")
no = encoding.encode("NO")
self._loop_args = {"logit_bias": {yes[0]: 100, no[0]: 100}, "max_tokens": 1}
def __call__(
self, texts: list[str],
prompt_variables: dict[str, Any] | None = None,
callback: Callable | None = None
) -> GraphExtractionResult:
"""Call method definition."""
if prompt_variables is None:
prompt_variables = {}
all_records: dict[int, str] = {}
source_doc_map: dict[int, str] = {}
# Wire defaults into the prompt variables
prompt_variables = {
**prompt_variables,
self._tuple_delimiter_key: prompt_variables.get(self._tuple_delimiter_key)
or DEFAULT_TUPLE_DELIMITER,
self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key)
or DEFAULT_RECORD_DELIMITER,
self._completion_delimiter_key: prompt_variables.get(
self._completion_delimiter_key
)
or DEFAULT_COMPLETION_DELIMITER,
self._entity_types_key: ",".join(
prompt_variables.get(self._entity_types_key) or DEFAULT_ENTITY_TYPES
),
}
st = timer()
total = len(texts)
total_token_count = 0
for doc_index, text in enumerate(texts):
try:
# Invoke the entity extraction
result, token_count = self._process_document(text, prompt_variables)
source_doc_map[doc_index] = text
all_records[doc_index] = result
total_token_count += token_count
if callback: callback(msg=f"{doc_index+1}/{total}, elapsed: {timer() - st}s, used tokens: {total_token_count}")
except Exception as e:
logging.exception("error extracting graph")
self._on_error(
e,
traceback.format_exc(),
{
"doc_index": doc_index,
"text": text,
},
)
output = self._process_results(
all_records,
prompt_variables.get(self._tuple_delimiter_key, DEFAULT_TUPLE_DELIMITER),
prompt_variables.get(self._record_delimiter_key, DEFAULT_RECORD_DELIMITER),
)
return GraphExtractionResult(
output=output,
source_docs=source_doc_map,
)
def _process_document(
self, text: str, prompt_variables: dict[str, str]
) -> str:
variables = {
**prompt_variables,
self._input_text_key: text,
}
token_count = 0
text = perform_variable_replacements(self._extraction_prompt, variables=variables)
gen_conf = {"temperature": 0.3}
response = self._llm.chat(text, [], gen_conf)
token_count = num_tokens_from_string(text + response)
results = response or ""
history = [{"role": "system", "content": text}, {"role": "assistant", "content": response}]
# Repeat to ensure we maximize entity count
for i in range(self._max_gleanings):
text = perform_variable_replacements(CONTINUE_PROMPT, history=history, variables=variables)
history.append({"role": "user", "content": text})
response = self._llm.chat("", history, gen_conf)
results += response or ""
# if this is the final glean, don't bother updating the continuation flag
if i >= self._max_gleanings - 1:
break
history.append({"role": "assistant", "content": response})
history.append({"role": "user", "content": LOOP_PROMPT})
continuation = self._llm.chat("", history, self._loop_args)
if continuation != "YES":
break
return results, token_count
def _process_results(
self,
results: dict[int, str],
tuple_delimiter: str,
record_delimiter: str,
) -> nx.Graph:
"""Parse the result string to create an undirected unipartite graph.
Args:
- results - dict of results from the extraction chain
- tuple_delimiter - delimiter between tuples in an output record, default is '<|>'
- record_delimiter - delimiter between records, default is '##'
Returns:
- output - unipartite graph in graphML format
"""
graph = nx.Graph()
for source_doc_id, extracted_data in results.items():
records = [r.strip() for r in extracted_data.split(record_delimiter)]
for record in records:
record = re.sub(r"^\(|\)$", "", record.strip())
record_attributes = record.split(tuple_delimiter)
if record_attributes[0] == '"entity"' and len(record_attributes) >= 4:
# add this record as a node in the G
entity_name = clean_str(record_attributes[1].upper())
entity_type = clean_str(record_attributes[2].upper())
entity_description = clean_str(record_attributes[3])
if entity_name in graph.nodes():
node = graph.nodes[entity_name]
if self._join_descriptions:
node["description"] = "\n".join(
list({
*_unpack_descriptions(node),
entity_description,
})
)
else:
if len(entity_description) > len(node["description"]):
node["description"] = entity_description
node["source_id"] = ", ".join(
list({
*_unpack_source_ids(node),
str(source_doc_id),
})
)
node["entity_type"] = (
entity_type if entity_type != "" else node["entity_type"]
)
else:
graph.add_node(
entity_name,
entity_type=entity_type,
description=entity_description,
source_id=str(source_doc_id),
weight=1
)
if (
record_attributes[0] == '"relationship"'
and len(record_attributes) >= 5
):
# add this record as edge
source = clean_str(record_attributes[1].upper())
target = clean_str(record_attributes[2].upper())
edge_description = clean_str(record_attributes[3])
edge_source_id = clean_str(str(source_doc_id))
weight = (
float(record_attributes[-1])
if isinstance(record_attributes[-1], numbers.Number)
else 1.0
)
if source not in graph.nodes():
graph.add_node(
source,
entity_type="",
description="",
source_id=edge_source_id,
weight=1
)
if target not in graph.nodes():
graph.add_node(
target,
entity_type="",
description="",
source_id=edge_source_id,
weight=1
)
if graph.has_edge(source, target):
edge_data = graph.get_edge_data(source, target)
if edge_data is not None:
weight += edge_data["weight"]
if self._join_descriptions:
edge_description = "\n".join(
list({
*_unpack_descriptions(edge_data),
edge_description,
})
)
edge_source_id = ", ".join(
list({
*_unpack_source_ids(edge_data),
str(source_doc_id),
})
)
graph.add_edge(
source,
target,
weight=weight,
description=edge_description,
source_id=edge_source_id,
)
for node_degree in graph.degree:
graph.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
return graph
def _unpack_descriptions(data: Mapping) -> list[str]:
value = data.get("description", None)
return [] if value is None else value.split("\n")
def _unpack_source_ids(data: Mapping) -> list[str]:
value = data.get("source_id", None)
return [] if value is None else value.split(", ")