File size: 6,131 Bytes
8a1292d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import numpy as np
import torch
from torch import no_grad, LongTensor
import argparse
import commons
from mel_processing import spectrogram_torch
import utils
from models import SynthesizerTrn
import gradio as gr
import librosa
import webbrowser
import time
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence,_symbol_to_id, get_bert
from text.cleaner import clean_text
from scipy.io import wavfile


device = "cuda:0" if torch.cuda.is_available() else "cpu"
import logging
logging.getLogger("PIL").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("asyncio").setLevel(logging.WARNING)

language_marks = {
    "简体中文": "[ZH]",
}
lang = ['简体中文']
def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    print([f"{p}{t}" for p, t in zip(phone, tone)])
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str)

    assert bert.shape[-1] == len(phone)

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)

    return bert, phone, tone, language
'''
def create_tts_fn(model, hps, speaker_ids):
    def tts_fn(text, speaker, language, speed):
        if language is not None:
            text = language_marks[language] + text + language_marks[language]
        speaker_id = speaker_ids[speaker]
        stn_tst = get_text(text, hps, False)
        with no_grad():
            x_tst = stn_tst.unsqueeze(0).to(device)
            x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
            sid = LongTensor([speaker_id]).to(device)
            audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
                                length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
        del stn_tst, x_tst, x_tst_lengths, sid
        return "Success", (hps.data.sampling_rate, audio)

    return tts_fn
'''
dev='cuda'
def infer(text, sdp_ratio, noise_scale, noise_scale_w,length_scale,sid):
    bert, phones, tones, lang_ids = get_text(text,"ZH", hps,)
    print(sid)
    with torch.no_grad():
        x_tst=phones.to(dev).unsqueeze(0)
        tones=tones.to(dev).unsqueeze(0)
        lang_ids=lang_ids.to(dev).unsqueeze(0)
        bert = bert.to(dev).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(dev)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(dev)
        audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids,bert, sdp_ratio=sdp_ratio
                           , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        return "Success",(hps.data.sampling_rate, audio)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_dir", default="./G_latest.pth", help="directory to your fine-tuned model")
    parser.add_argument("--config_dir", default="./configs\config.json", help="directory to your model config file")
    parser.add_argument("--share", default=False, help="make link public (used in colab)")

    args = parser.parse_args()
    hps = utils.get_hparams_from_file(args.config_dir)


    net_g = SynthesizerTrn(
    len(symbols),
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    n_speakers=hps.data.n_speakers,
    **hps.model).to(dev)
    _ = net_g.eval()

    _ = utils.load_checkpoint(args.model_dir, net_g, None,skip_optimizer=True)

    speaker_ids = hps.data.spk2id
    speakers = list(hps.data.spk2id.keys())
    #inf = infer(net_g, hps, speaker_ids)
    app = gr.Blocks()
    with app:
        with gr.Tab("Text-to-Speech"):
            with gr.Row():
                with gr.Column():
                    textbox = gr.TextArea(label="Text",
                                          placeholder="Type your sentence here",
                                          value="生活就像海洋,只有意志坚强的人,才能到达彼岸。", elem_id=f"tts-input")
                    # select character
                    char_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label='character')
                    language_dropdown = gr.Dropdown(choices=lang, value=lang[0], label='language')
                    sdp_ratio = gr.Slider(minimum=0.1, maximum=0.9, value=0.2, step=0.1,
                                                label='SDP/DP混合比-语调方差')
                    noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.5, step=0.1,
                                                label='noise/感情变化')
                    noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.9, step=0.1,
                                                label='noisew/音节发音长度变化')
                    length_scale = gr.Slider(minimum=0.1, maximum=2, value=1.0, step=0.1,
                                                label='length/语速')
                with gr.Column():
                    text_output = gr.Textbox(label="Message")
                    audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
                    btn = gr.Button("Generate!")
                    btn.click(infer,
                              inputs=[textbox,sdp_ratio,noise_scale,noise_scale_w,length_scale,char_dropdown],
                              outputs=[text_output, audio_output])
    webbrowser.open("http://127.0.0.1:7860")
    app.launch(share=args.share)