File size: 18,340 Bytes
8a1292d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
import json
import argparse
import itertools
import math
import torch
import shutil
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
import commons
import utils
from data_utils import (
    TextAudioSpeakerLoader,
    TextAudioSpeakerCollate,
    DistributedBucketSampler
)
from models import (
    SynthesizerTrn,
    MultiPeriodDiscriminator,
    DurationDiscriminator,
)
from losses import (
    generator_loss,
    discriminator_loss,
    feature_loss,
    kl_loss
)
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from text.symbols import symbols

torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('medium')
global_step = 0


def main():
    """Assume Single Node Multi GPUs Training Only"""
    assert torch.cuda.is_available(), "CPU training is not allowed."

    n_gpus = torch.cuda.device_count()
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '65280'

    hps = utils.get_hparams()
    if not hps.cont:
           shutil.copy('./pretrained_models/D_0.pth','./logs/OUTPUT_MODEL/D_0.pth')
           shutil.copy('./pretrained_models/G_0.pth','./logs/OUTPUT_MODEL/G_0.pth')
           shutil.copy('./pretrained_models/DUR_0.pth','./logs/OUTPUT_MODEL/DUR_0.pth')
    mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))


def run(rank, n_gpus, hps):
    global global_step
    if rank == 0:
        logger = utils.get_logger(hps.model_dir)
        logger.info(hps)
        utils.check_git_hash(hps.model_dir)
        writer = SummaryWriter(log_dir=hps.model_dir)
        writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))

    dist.init_process_group(backend=  'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
    torch.manual_seed(hps.train.seed)
    torch.cuda.set_device(rank)

    train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
    train_sampler = DistributedBucketSampler(
        train_dataset,
        hps.train.batch_size,
        [32, 300, 400, 500, 600, 700, 800, 900, 1000],
        num_replicas=n_gpus,
        rank=rank,
        shuffle=True)
    collate_fn = TextAudioSpeakerCollate()
    train_loader = DataLoader(train_dataset, num_workers=2, shuffle=False, pin_memory=True,
                              collate_fn=collate_fn, batch_sampler=train_sampler)
    if rank == 0:
        eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
        eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
                                 batch_size=1, pin_memory=True,
                                 drop_last=False, collate_fn=collate_fn)
    if "use_noise_scaled_mas" in hps.model.keys() and hps.model.use_noise_scaled_mas == True:
        print("Using noise scaled MAS for VITS2")
        use_noise_scaled_mas = True
        mas_noise_scale_initial = 0.01
        noise_scale_delta = 2e-6
    else:
        print("Using normal MAS for VITS1")
        use_noise_scaled_mas = False
        mas_noise_scale_initial = 0.0
        noise_scale_delta = 0.0
    if "use_duration_discriminator" in hps.model.keys() and hps.model.use_duration_discriminator == True:
        print("Using duration discriminator for VITS2")
        use_duration_discriminator = True
        net_dur_disc = DurationDiscriminator(
         hps.model.hidden_channels, 
         hps.model.hidden_channels, 
         3, 
         0.1, 
         gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
         ).cuda(rank)
    if "use_spk_conditioned_encoder" in hps.model.keys() and hps.model.use_spk_conditioned_encoder == True:
        if hps.data.n_speakers == 0:
            raise ValueError("n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model")
        use_spk_conditioned_encoder = True
    else:
        print("Using normal encoder for VITS1")
        use_spk_conditioned_encoder = False

    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        mas_noise_scale_initial = mas_noise_scale_initial,
        noise_scale_delta = noise_scale_delta,
        **hps.model).cuda(rank)

    freeze_enc = getattr(hps.model, "freeze_enc", False)
    if freeze_enc:
        print("freeze encoder !!!")
        for param in net_g.enc_p.parameters():
            param.requires_grad = False

    net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
    optim_g = torch.optim.AdamW(
        filter(lambda p: p.requires_grad, net_g.parameters()),
        hps.train.learning_rate,
        betas=hps.train.betas,
        eps=hps.train.eps)
    optim_d = torch.optim.AdamW(
        net_d.parameters(),
        hps.train.learning_rate,
        betas=hps.train.betas,
        eps=hps.train.eps)
    if net_dur_disc is not None:
        optim_dur_disc = torch.optim.AdamW(
        net_dur_disc.parameters(),
        hps.train.learning_rate,
        betas=hps.train.betas,
        eps=hps.train.eps)
    else:
        optim_dur_disc = None
    net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
    net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
    if net_dur_disc is not None:
        net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)

    pretrain_dir = None
    if pretrain_dir is None:
        try:
            if net_dur_disc is not None:
                _, optim_dur_disc, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"), net_dur_disc, optim_dur_disc, skip_optimizer=not hps.cont)
            _, optim_g, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
                                                   optim_g, skip_optimizer=not hps.cont)
            _, optim_d, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
                                                   optim_d, skip_optimizer=not hps.cont)
            
            epoch_str = max(epoch_str, 1)
            global_step = (epoch_str - 1) * len(train_loader)
        except Exception as e:
            print(e)
            epoch_str = 1
            global_step = 0
    else:
        _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(pretrain_dir, "G_*.pth"), net_g,
                                                   optim_g, True)
        _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(pretrain_dir, "D_*.pth"), net_d,
                                                   optim_d, True)



    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
    if net_dur_disc is not None:
        scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
    else:
        scheduler_dur_disc = None
    scaler = GradScaler(enabled=hps.train.fp16_run)

    for epoch in range(epoch_str, hps.train.epochs + 1):
        if rank == 0:
            train_and_evaluate(rank, epoch, hps, [net_g, net_d, net_dur_disc], [optim_g, optim_d, optim_dur_disc], [scheduler_g, scheduler_d, scheduler_dur_disc], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
        else:
            train_and_evaluate(rank, epoch, hps, [net_g, net_d, net_dur_disc], [optim_g, optim_d, optim_dur_disc], [scheduler_g, scheduler_d, scheduler_dur_disc], scaler, [train_loader, None], None, None)
        scheduler_g.step()
        scheduler_d.step()
        if net_dur_disc is not None:
            scheduler_dur_disc.step()


def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
    net_g, net_d, net_dur_disc = nets
    optim_g, optim_d, optim_dur_disc = optims
    scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
    train_loader, eval_loader = loaders
    if writers is not None:
        writer, writer_eval = writers

    train_loader.batch_sampler.set_epoch(epoch)
    global global_step

    net_g.train()
    net_d.train()
    if net_dur_disc is not None:
        net_dur_disc.train()
    for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers, tone, language, bert) in tqdm(enumerate(train_loader)):
        if net_g.module.use_noise_scaled_mas:
            current_mas_noise_scale = net_g.module.mas_noise_scale_initial - net_g.module.noise_scale_delta * global_step
            net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
        x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
        spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
        y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
        speakers = speakers.cuda(rank, non_blocking=True)
        tone = tone.cuda(rank, non_blocking=True)
        language = language.cuda(rank, non_blocking=True)
        bert = bert.cuda(rank, non_blocking=True)

        with autocast(enabled=hps.train.fp16_run):
            y_hat, l_length, attn, ids_slice, x_mask, z_mask, \
                (z, z_p, m_p, logs_p, m_q, logs_q), (hidden_x, logw, logw_) = net_g(x, x_lengths, spec, spec_lengths, speakers, tone, language, bert)
            mel = spec_to_mel_torch(
                spec,
                hps.data.filter_length,
                hps.data.n_mel_channels,
                hps.data.sampling_rate,
                hps.data.mel_fmin,
                hps.data.mel_fmax)
            y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
            y_hat_mel = mel_spectrogram_torch(
                y_hat.squeeze(1),
                hps.data.filter_length,
                hps.data.n_mel_channels,
                hps.data.sampling_rate,
                hps.data.hop_length,
                hps.data.win_length,
                hps.data.mel_fmin,
                hps.data.mel_fmax
            )

            y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size)  # slice

            # Discriminator
            y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
            with autocast(enabled=False):
                loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
                loss_disc_all = loss_disc
            if net_dur_disc is not None:
                y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach())
                with autocast(enabled=False):
                 # TODO: I think need to mean using the mask, but for now, just mean all
                    loss_dur_disc, losses_dur_disc_r, losses_dur_disc_g = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
                    loss_dur_disc_all = loss_dur_disc
                optim_dur_disc.zero_grad()
                scaler.scale(loss_dur_disc_all).backward()
                scaler.unscale_(optim_dur_disc)
                grad_norm_dur_disc = commons.clip_grad_value_(net_dur_disc.parameters(), None)
                scaler.step(optim_dur_disc)

        optim_d.zero_grad()
        scaler.scale(loss_disc_all).backward()
        scaler.unscale_(optim_d)
        grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
        scaler.step(optim_d)

        with autocast(enabled=hps.train.fp16_run):
            # Generator
            y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
            if net_dur_disc is not None:
                y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
            with autocast(enabled=False):
                loss_dur = torch.sum(l_length.float())
                loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
                loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl

                loss_fm = feature_loss(fmap_r, fmap_g)
                loss_gen, losses_gen = generator_loss(y_d_hat_g)
                loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
                if net_dur_disc is not None:
                    loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
                    loss_gen_all += loss_dur_gen
        optim_g.zero_grad()
        scaler.scale(loss_gen_all).backward()
        scaler.unscale_(optim_g)
        grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
        scaler.step(optim_g)
        scaler.update()

        if rank == 0:
            if global_step % hps.train.log_interval == 0:
                lr = optim_g.param_groups[0]['lr']
                losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
                logger.info('Train Epoch: {} [{:.0f}%]'.format(
                    epoch,
                    100. * batch_idx / len(train_loader)))
                logger.info([x.item() for x in losses] + [global_step, lr])

                scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
                               "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
                scalar_dict.update(
                    {"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
                scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
                scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
                scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
          
                image_dict = {
                    "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
                    "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
                    "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
                    "all/attn": utils.plot_alignment_to_numpy(attn[0, 0].data.cpu().numpy())
                }
                utils.summarize(
                    writer=writer,
                    global_step=global_step,
                    images=image_dict,
                    scalars=scalar_dict)

            if global_step % hps.train.eval_interval == 0:
                evaluate(hps, net_g, eval_loader, writer_eval)
                utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
                                      os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
                utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
                                      os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
                if net_dur_disc is not None:
                    utils.save_checkpoint(net_dur_disc, optim_dur_disc, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)))    
                keep_ckpts = getattr(hps.train, 'keep_ckpts', 5)
                if keep_ckpts > 0:
                    utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)


        global_step += 1

    if rank == 0:
        logger.info('====> Epoch: {}'.format(epoch))



def evaluate(hps, generator, eval_loader, writer_eval):
    generator.eval()
    image_dict = {}
    audio_dict = {}
    print("Evaluating ...")
    with torch.no_grad():
        for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers, tone, language, bert) in enumerate(eval_loader):
            x, x_lengths = x.cuda(), x_lengths.cuda()
            spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
            y, y_lengths = y.cuda(), y_lengths.cuda()
            speakers = speakers.cuda()
            bert = bert.cuda()
            tone = tone.cuda()
            language = language.cuda()
            for use_sdp in [True, False]:
                y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, tone, language, bert, y=spec, max_len=1000, sdp_ratio=0.0 if not use_sdp else 1.0)
                y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length

                mel = spec_to_mel_torch(
                    spec,
                    hps.data.filter_length,
                    hps.data.n_mel_channels,
                    hps.data.sampling_rate,
                    hps.data.mel_fmin,
                    hps.data.mel_fmax)
                y_hat_mel = mel_spectrogram_torch(
                    y_hat.squeeze(1).float(),
                    hps.data.filter_length,
                    hps.data.n_mel_channels,
                    hps.data.sampling_rate,
                    hps.data.hop_length,
                    hps.data.win_length,
                    hps.data.mel_fmin,
                    hps.data.mel_fmax
                )
                image_dict.update({
                    f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
                })
                audio_dict.update({
                    f"gen/audio_{batch_idx}_{use_sdp}": y_hat[0, :, :y_hat_lengths[0]]
                })
                image_dict.update({f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
                audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, :y_lengths[0]]})

    utils.summarize(
        writer=writer_eval,
        global_step=global_step,
        images=image_dict,
        audios=audio_dict,
        audio_sampling_rate=hps.data.sampling_rate
    )
    generator.train()

if __name__ == "__main__":
    main()