File size: 3,603 Bytes
0ba4469
 
 
 
 
 
c6e1f7a
0ba4469
 
 
 
 
 
 
 
 
9d490ca
0ba4469
 
9d490ca
0ba4469
 
9d490ca
0ba4469
f471992
0ba4469
 
f471992
0ba4469
9d490ca
0ba4469
f471992
0ba4469
 
f471992
0ba4469
9d490ca
0ba4469
f471992
0ba4469
 
f471992
 
9d490ca
0ba4469
f471992
0ba4469
 
f471992
 
9d490ca
0ba4469
7dfbadd
 
 
 
 
 
 
9d490ca
 
7dfbadd
 
 
 
 
 
 
 
 
 
 
68251ed
7dfbadd
 
 
68251ed
7dfbadd
 
 
 
 
 
 
 
 
9d490ca
dde4984
 
 
9d490ca
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
tags:
- spacy
- token-classification
language:
- zh
license: mit
model-index:
- name: zh_core_web_lg
  results:
  - task:
      name: NER
      type: token-classification
    metrics:
    - name: NER Precision
      type: precision
      value: 0.7355275444
    - name: NER Recall
      type: recall
      value: 0.6925274725
    - name: NER F Score
      type: f_score
      value: 0.7133801223
  - task:
      name: TAG
      type: token-classification
    metrics:
    - name: TAG (XPOS) Accuracy
      type: accuracy
      value: 0.9033086963
  - task:
      name: UNLABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Unlabeled Attachment Score (UAS)
      type: f_score
      value: 0.7085620979
  - task:
      name: LABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Labeled Attachment Score (LAS)
      type: f_score
      value: 0.6571012366
  - task:
      name: SENTS
      type: token-classification
    metrics:
    - name: Sentences F-Score
      type: f_score
      value: 0.7524359748
---
### Details: https://spacy.io/models/zh#zh_core_web_lg

Chinese pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler.

| Feature | Description |
| --- | --- |
| **Name** | `zh_core_web_lg` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[CoreNLP Universal Dependencies Converter](https://nlp.stanford.edu/software/stanford-dependencies.html) (Stanford NLP Group)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |

### Label Scheme

<details>

<summary>View label scheme (100 labels for 3 components)</summary>

| Component | Labels |
| --- | --- |
| **`tagger`** | `AD`, `AS`, `BA`, `CC`, `CD`, `CS`, `DEC`, `DEG`, `DER`, `DEV`, `DT`, `ETC`, `FW`, `IJ`, `INF`, `JJ`, `LB`, `LC`, `M`, `MSP`, `NN`, `NR`, `NT`, `OD`, `ON`, `P`, `PN`, `PU`, `SB`, `SP`, `URL`, `VA`, `VC`, `VE`, `VV`, `X`, `_SP` |
| **`parser`** | `ROOT`, `acl`, `advcl:loc`, `advmod`, `advmod:dvp`, `advmod:loc`, `advmod:rcomp`, `amod`, `amod:ordmod`, `appos`, `aux:asp`, `aux:ba`, `aux:modal`, `aux:prtmod`, `auxpass`, `case`, `cc`, `ccomp`, `compound:nn`, `compound:vc`, `conj`, `cop`, `dep`, `det`, `discourse`, `dobj`, `etc`, `mark`, `mark:clf`, `name`, `neg`, `nmod`, `nmod:assmod`, `nmod:poss`, `nmod:prep`, `nmod:range`, `nmod:tmod`, `nmod:topic`, `nsubj`, `nsubj:xsubj`, `nsubjpass`, `nummod`, `parataxis:prnmod`, `punct`, `xcomp` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |

</details>

### Accuracy

| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 95.85 |
| `TOKEN_P` | 94.58 |
| `TOKEN_R` | 91.36 |
| `TOKEN_F` | 92.94 |
| `TAG_ACC` | 90.33 |
| `SENTS_P` | 78.05 |
| `SENTS_R` | 72.63 |
| `SENTS_F` | 75.24 |
| `DEP_UAS` | 70.86 |
| `DEP_LAS` | 65.71 |
| `ENTS_P` | 73.55 |
| `ENTS_R` | 69.25 |
| `ENTS_F` | 71.34 |