--- tags: - spacy - token-classification language: - zh license: mit model-index: - name: zh_core_web_lg results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.7335270192 - name: NER Recall type: recall value: 0.6936263736 - name: NER F Score type: f_score value: 0.7130189212 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9027089042 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.7072780475 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.6564620448 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.7530260108 --- ### Details: https://spacy.io/models/zh#zh_core_web_lg Chinese pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler. | Feature | Description | | --- | --- | | **Name** | `zh_core_web_lg` | | **Version** | `3.4.0` | | **spaCy** | `>=3.4.0,<3.5.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `ner` | | **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `ner` | | **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) | | **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)
[CoreNLP Universal Dependencies Converter](https://nlp.stanford.edu/software/stanford-dependencies.html) (Stanford NLP Group)
[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) | | **License** | `MIT` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme
View label scheme (100 labels for 3 components) | Component | Labels | | --- | --- | | **`tagger`** | `AD`, `AS`, `BA`, `CC`, `CD`, `CS`, `DEC`, `DEG`, `DER`, `DEV`, `DT`, `ETC`, `FW`, `IJ`, `INF`, `JJ`, `LB`, `LC`, `M`, `MSP`, `NN`, `NR`, `NT`, `OD`, `ON`, `P`, `PN`, `PU`, `SB`, `SP`, `URL`, `VA`, `VC`, `VE`, `VV`, `X`, `_SP` | | **`parser`** | `ROOT`, `acl`, `advcl:loc`, `advmod`, `advmod:dvp`, `advmod:loc`, `advmod:rcomp`, `amod`, `amod:ordmod`, `appos`, `aux:asp`, `aux:ba`, `aux:modal`, `aux:prtmod`, `auxpass`, `case`, `cc`, `ccomp`, `compound:nn`, `compound:vc`, `conj`, `cop`, `dep`, `det`, `discourse`, `dobj`, `etc`, `mark`, `mark:clf`, `name`, `neg`, `nmod`, `nmod:assmod`, `nmod:poss`, `nmod:prep`, `nmod:range`, `nmod:tmod`, `nmod:topic`, `nsubj`, `nsubj:xsubj`, `nsubjpass`, `nummod`, `parataxis:prnmod`, `punct`, `xcomp` | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 97.88 | | `TOKEN_P` | 94.58 | | `TOKEN_R` | 91.36 | | `TOKEN_F` | 92.94 | | `TAG_ACC` | 90.27 | | `SENTS_P` | 77.74 | | `SENTS_R` | 73.01 | | `SENTS_F` | 75.30 | | `DEP_UAS` | 70.73 | | `DEP_LAS` | 65.65 | | `ENTS_P` | 73.35 | | `ENTS_R` | 69.36 | | `ENTS_F` | 71.30 |