File size: 3,911 Bytes
3834b96
 
 
 
177f24c
3834b96
 
 
 
 
 
 
 
 
 
 
 
 
dcd9365
 
 
1854311
3834b96
 
 
 
82dddc7
 
 
3834b96
 
 
14dd490
3834b96
 
 
 
4beffe6
3834b96
330fe4c
3834b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb56d83
3834b96
 
 
abdf473
 
3834b96
efe1a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f49f79
efe1a56
 
 
 
03e7611
 
 
3834b96
 
 
 
 
 
 
 
 
efe1a56
3834b96
 
38d2aa2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
language: "fr"
thumbnail:
tags:
- automatic-speech-recognition
- CTC
- Attention
- pytorch
- speechbrain
- Transformer
license: "apache-2.0"
datasets:
- commonvoice
metrics:
- wer
- cer
---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# wav2vec 2.0 with CTC/Attention trained on CommonVoice French (No LM)

This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on CommonVoice (French Language) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). 

The performance of the model is the following:

| Release | Test CER | Test WER | GPUs |
|:-------------:|:--------------:|:--------------:| :--------:|
| 29-04-21 | 9.78 | 13.34 | 2xV100 32GB |

## Pipeline description

This ASR system is composed of 2 different but linked blocks:
- Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions (train.tsv) of CommonVoice (FR).
- Acoustic model (wav2vec2.0 + CTC/Attention). A pretrained wav2vec 2.0 model ([LeBenchmark/wav2vec2-FR-M-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-M-large)) is combined with two DNN layers and finetuned on CommonVoice FR. 
The obtained final acoustic representation is given to the CTC and attention decoders.


## Install SpeechBrain

First of all, please install tranformers and SpeechBrain with the following command:

```
pip install speechbrain transformers
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Transcribing your own audio files (in French)

```python
from speechbrain.pretrained import EncoderDecoderASR

asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-crdnn-commonvoice-fr")
asr_model.transcribe_file("example-fr.wav")

```
### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain.
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```bash
cd recipes/CommonVoice/ASR/seq2seq
python train_with_wav2vec.py hparams/train_fr_with_wav2vec.yaml --data_folder=your_data_folder
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1tjz6IZmVRkuRE97E7h1cXFoGTer7pT73?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

#### Referencing SpeechBrain

```
@misc{SB2021,
    author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
    title = {SpeechBrain},
    year = {2021},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\\url{https://github.com/speechbrain/speechbrain}},
  }
```

#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
Website: https://speechbrain.github.io/
GitHub: https://github.com/speechbrain/speechbrain