File size: 4,118 Bytes
3834b96
 
 
 
177f24c
3834b96
 
 
 
 
 
 
 
 
 
 
 
dcd9365
 
 
1854311
3834b96
 
 
 
42dba6c
82dddc7
 
3834b96
 
 
42dba6c
3834b96
 
 
 
4beffe6
3834b96
42dba6c
 
3834b96
c98df7a
 
3834b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dba6c
3834b96
42dba6c
d641506
3834b96
 
abdf473
 
3834b96
efe1a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dba6c
5f49f79
efe1a56
 
42dba6c
efe1a56
03e7611
 
 
3834b96
 
 
 
 
 
 
 
 
94b0131
3834b96
 
38d2aa2
 
 
94b0131
38d2aa2
94b0131
38d2aa2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
language: "fr"
thumbnail:
tags:
- automatic-speech-recognition
- CTC
- pytorch
- speechbrain
- Transformer
license: "apache-2.0"
datasets:
- commonvoice
metrics:
- wer
- cer
---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# wav2vec 2.0 with CTC/Attention trained on CommonVoice French (No LM)

This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on CommonVoice (French Language) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io).

The performance of the model is the following:

| Release | Test CER | Test WER | GPUs |
|:-------------:|:--------------:|:--------------:| :--------:|
| 24-08-21 | 3.19 | 9.96 | 2xV100 32GB |

## Pipeline description

This ASR system is composed of 2 different but linked blocks:
- Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions (train.tsv) of CommonVoice (FR).
- Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([LeBenchmark/wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large)) is combined with two DNN layers and finetuned on CommonVoice FR.
The obtained final acoustic representation is given to the CTC greedy decoder.

The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.

## Install SpeechBrain

First of all, please install tranformers and SpeechBrain with the following command:

```
pip install speechbrain transformers
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Transcribing your own audio files (in French)

```python
from speechbrain.pretrained import EncoderASR

asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr")
asr_model.transcribe_file('speechbrain/asr-wav2vec2-commonvoice-fr/example-fr.wav')

```
### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain.
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```bash
cd recipes/CommonVoice/ASR/CTC/
python train_with_wav2vec.py hparams/train_fr_with_wav2vec.yaml --data_folder=your_data_folder
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1T9DfdZwcNI9CURxhLCi8GA5JVz8adiY8?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

#### Referencing SpeechBrain

```
@misc{SB2021,
    author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
    title = {SpeechBrain},
    year = {2021},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
  }
```

#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.

Website: https://speechbrain.github.io/

GitHub: https://github.com/speechbrain/speechbrain