--- language: - ar - eu - br - ca - cv - cs - dv - nl - en - eo - et - fr - fy - ka - de - el - cnh - id - ia - it - ja - kab - rw - ky - lv - mt - mn - fa - pl - pt - ro - rm - ru - sah - sl - es - sv - ta - tt - tr - uk - cy language_bcp47: - zh-CH - zh-HK - zh-TW thumbnail: tags: - audio-classification - speechbrain - embeddings - Language - Identification - pytorch - ECAPA-TDNN - TDNN - CommonLanguage license: "apache-2.0" datasets: - Urbansound8k metrics: - Accuracy widget: - example_title: English Sample src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac ---

# Language Identification from Speech Recordings with ECAPA embeddings on CommonLanguage This repository provides all the necessary tools to perform language identification from speeech recordinfs with SpeechBrain. The system uses a model pretrained on the CommonLanguage dataset (45 languages). You can download the dataset [here](https://zenodo.org/record/5036977#.YNzDbXVKg5k) The provided system can recognize the following 45 languages from short speech recordings: ``` Arabic, Basque, Breton, Catalan, Chinese_China, Chinese_Hongkong, Chinese_Taiwan, Chuvash, Czech, Dhivehi, Dutch, English, Esperanto, Estonian, French, Frisian, Georgian, German, Greek, Hakha_Chin, Indonesian, Interlingua, Italian, Japanese, Kabyle, Kinyarwanda, Kyrgyz, Latvian, Maltese, Mangolian, Persian, Polish, Portuguese, Romanian, Romansh_Sursilvan, Russian, Sakha, Slovenian, Spanish, Swedish, Tamil, Tatar, Turkish, Ukranian, Welsh ``` For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The given model performance on the test set is: | Release | Accuracy (%) |:-------------:|:--------------:| | 30-06-21 | 85.0 | ## Pipeline description This system is composed of a ECAPA model coupled with statistical pooling. A classifier, trained with Categorical Cross-Entropy Loss, is applied on top of that. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Perform Language Identification from Speech Recordings ```python import torchaudio from speechbrain.pretrained import EncoderClassifier classifier = EncoderClassifier.from_hparams(source="speechbrain/lang-id-commonlanguage_ecapa", savedir="pretrained_models/lang-id-commonlanguage_ecapa") # Italian Example out_prob, score, index, text_lab = classifier.classify_file('speechbrain/lang-id-commonlanguage_ecapa/example-it.wav') print(text_lab) # French Example out_prob, score, index, text_lab = classifier.classify_file('speechbrain/lang-id-commonlanguage_ecapa/example-fr.wav') print(text_lab) ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain (a02f860e). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/CommonLanguage/lang_id python train.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1sD2u0MhSmJlx_3RRgwsYzevX81RM8-WE?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing ECAPA ```@inproceedings{DBLP:conf/interspeech/DesplanquesTD20, author = {Brecht Desplanques and Jenthe Thienpondt and Kris Demuynck}, editor = {Helen Meng and Bo Xu and Thomas Fang Zheng}, title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation in {TDNN} Based Speaker Verification}, booktitle = {Interspeech 2020}, pages = {3830--3834}, publisher = {{ISCA}}, year = {2020}, } ``` # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```