File size: 4,269 Bytes
5df46bf
3fd6072
 
 
 
 
 
 
 
 
 
65ce136
3fd6072
 
 
 
 
 
 
2d35914
 
 
 
 
 
cc6c2bc
 
 
 
 
 
5cd680c
 
 
cc6c2bc
5df46bf
3fd6072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3971b
3fd6072
 
2d35914
3fd6072
 
2d35914
3fd6072
037093b
3fd6072
 
 
 
 
 
edb64d9
 
3fd6072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
language: "de"
thumbnail:
tags:
- audio-to-audio 
- Speech Enhancement
- RescueSpeech
- SepFormer
- Transformer 
- pytorch
- speechbrain
- Search and Rescue
license: "apache-2.0"
datasets:
- RescueSpeech
metrics:
- SI-SNR
- PESQ
- SDR
model-index:
- name: rescuespeech_sepformer
  results:
  - task:
      name: Speech Enhancement
      type: speech-enhancement
    metrics:
    - name: Test PESQ
      type: pesq
      value: '2.24'
    - name: Test SI-SNRi
      type: si-snri
      value: '7.849'
    - name: Test SI-SDRi
      type: si-sdri
      value: '8.414'
---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# SepFormer trained on RescueSpeech for speech enhancement (16k sampling frequency)
This repository provides all the necessary tools to perform speech enhancement (denoising) with a [SepFormer](https://arxiv.org/abs/2010.13154v2) model, implemented with SpeechBrain. The model was first trained on Microsoft-DNS 4 dataset and further fine-tuned on RescueSpeech dataset 16k sampling frequency. For a better experience we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). Given below is model performance on RescueSpeech test set.


| Release | Test-Set SI-SNRi | Test-Set SI-SDRi |Test-Set PESQ |
|:-------------:|:--------------:|:--------------:|:--------------:|
| 07-01-23 | 7.849 | 8.414 | 2.24 |

where SI-SNRi and SI-SDRi indicates the improvement in SI-SNR and SI-SDR metric.

## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io).

### Perform speech enhancement on your own audio file

```python
from speechbrain.inference.separation import SepformerSeparation as separator
import torchaudio

model = separator.from_hparams(source="speechbrain/rescuespeech_sepformer", savedir='pretrained_models/rescuespeech_sepformer')

# for custom file, change path
est_sources = model.separate_file(path='speechbrain/rescuespeech_sepformer/example_rescuespeech16k.wav') 

torchaudio.save("enhanced_rescuespeech16k.wav", est_sources[:, :, 0].detach().cpu(), 16000)

```

### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

You can find our training results (models, logs, etc) [here](https://www.dropbox.com/sh/02c3wesc65402f6/AAApoxBApft-JwqHK-bddedBa?dl=0).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

#### Referencing SpeechBrain

```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```


#### Referencing SepFormer
```bibtex
@inproceedings{subakan2021attention,
      title={Attention is All You Need in Speech Separation}, 
      author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
      year={2021},
      booktitle={ICASSP 2021}
}
```

### Referencing RescueSpeech
```bibtex
@misc{sagar2023rescuespeech,
    title={RescueSpeech: A German Corpus for Speech Recognition in Search and Rescue Domain},
    author={Sangeet Sagar and Mirco Ravanelli and Bernd Kiefer and Ivana Kruijff Korbayova and Josef van Genabith},
    year={2023},
    eprint={2306.04054},
    archivePrefix={arXiv},
    primaryClass={eess.AS}
}
```


# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/