# Generated 2023-06-20 from: # /netscratch/sagar/thesis/speechbrain/recipes/RescueSpeech/Enhancement/fine-tuning/hparams/sepformer_16k.yaml # yamllint disable # ################################ # Model: SepFormer for source separation # https://arxiv.org/abs/2010.13154 # # Author: Sangeet Sagar 2022 # Dataset : RescueSpeech # ################################ # Basic parameters # Seed needs to be set at top of yaml, before objects with parameters are made seed: 8201 __set_seed: !apply:torch.manual_seed [8201] experiment_name: sepformer-enhancement output_folder: results/sepformer-enhancement/8201 train_log: results/sepformer-enhancement/8201/train_log.txt save_folder: results/sepformer-enhancement/8201/save # Dataset prep parameters data_folder: dataset/audio_sythesis/Task_enhancement/ # !PLACEHOLDER csv_dir: csv_files train_csv: csv_files/train.csv valid_csv: csv_files/dev.csv test_csv: csv_files/test.csv skip_prep: false sample_rate: 16000 task: enhance dereverberate: false shuffle_train_data: true # Pretrained models pretrained_model_path: /netscratch/sagar/thesis/speechbrain/recipes/RescueSpeech/pre-trained/sepformer_dns_16k # !PLACEHOLDER # sepformer_dns_16k model # Basic parameters use_tensorboard: false tensorboard_logs: results/sepformer-enhancement/8201/logs/ # Experiment params auto_mix_prec: true # Set it to True for mixed precision test_only: false num_spks: 1 noprogressbar: false save_audio: true # Save estimated sources on disk downsample: false n_audio_to_save: 500 # Training parameters N_epochs: 150 batch_size: 1 batch_size_test: 1 lr: 0.00015 clip_grad_norm: 5 loss_upper_lim: 999999 # this is the upper limit for an acceptable loss # if True, the training sequences are cut to a specified length limit_training_signal_len: false # this is the length of sequences if we choose to limit # the signal length of training sequences training_signal_len: 32000 ckpt_interval_minutes: 60 # Parameters for data augmentation use_wavedrop: false use_speedperturb: true use_rand_shift: false min_shift: -8000 max_shift: 8000 speedperturb: !new:speechbrain.lobes.augment.TimeDomainSpecAugment perturb_prob: 1.0 drop_freq_prob: 0.0 drop_chunk_prob: 0.0 sample_rate: 16000 speeds: [95, 100, 105] wavedrop: !new:speechbrain.lobes.augment.TimeDomainSpecAugment perturb_prob: 0.0 drop_freq_prob: 1.0 drop_chunk_prob: 1.0 sample_rate: 16000 # loss thresholding -- this thresholds the training loss threshold_byloss: true threshold: -30 # Encoder parameters N_encoder_out: 256 out_channels: 256 kernel_size: 16 kernel_stride: 8 # Dataloader options dataloader_opts: batch_size: 1 num_workers: 3 dataloader_opts_valid: batch_size: 1 num_workers: 3 dataloader_opts_test: batch_size: 1 num_workers: 3 # Specifying the network Encoder: &id003 !new:speechbrain.lobes.models.dual_path.Encoder kernel_size: 16 out_channels: 256 SBtfintra: &id001 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock num_layers: 8 d_model: 256 nhead: 8 d_ffn: 1024 dropout: 0 use_positional_encoding: true norm_before: true SBtfinter: &id002 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock num_layers: 8 d_model: 256 nhead: 8 d_ffn: 1024 dropout: 0 use_positional_encoding: true norm_before: true MaskNet: &id005 !new:speechbrain.lobes.models.dual_path.Dual_Path_Model num_spks: 1 in_channels: 256 out_channels: 256 num_layers: 2 K: 250 intra_model: *id001 inter_model: *id002 norm: ln linear_layer_after_inter_intra: false skip_around_intra: true Decoder: &id004 !new:speechbrain.lobes.models.dual_path.Decoder in_channels: 256 out_channels: 1 kernel_size: 16 stride: 8 bias: false optimizer: !name:torch.optim.Adam lr: 0.00015 weight_decay: 0 loss: !name:speechbrain.nnet.losses.get_si_snr_with_pitwrapper lr_scheduler: &id007 !new:speechbrain.nnet.schedulers.ReduceLROnPlateau factor: 0.5 patience: 2 dont_halve_until_epoch: 85 epoch_counter: &id006 !new:speechbrain.utils.epoch_loop.EpochCounter limit: 150 modules: encoder: *id003 decoder: *id004 masknet: *id005 save_all_checkpoints: false checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer checkpoints_dir: results/sepformer-enhancement/8201/save recoverables: encoder: *id003 decoder: *id004 masknet: *id005 counter: *id006 lr_scheduler: *id007 train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger save_file: results/sepformer-enhancement/8201/train_log.txt ## Uncomment if you wish to fine-tune a pre-trained model. pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer loadables: encoder: !ref masknet: !ref decoder: !ref