Upload log/log-decode-2022-04-09-01-40-41
Browse files- log/log-decode-2022-04-09-01-40-41 +1176 -0
log/log-decode-2022-04-09-01-40-41
ADDED
@@ -0,0 +1,1176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-04-09 01:40:41,909 INFO [decode_test.py:583] Decoding started
|
2 |
+
2022-04-09 01:40:41,910 INFO [decode_test.py:584] {'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'env_info': {'k2-version': '1.14', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '6833270cb228aba7bf9681fccd41e2b52f7d984c', 'k2-git-date': 'Wed Mar 16 11:16:05 2022', 'lhotse-version': '1.0.0.dev+git.d917411.clean', 'torch-cuda-available': True, 'torch-cuda-version': '11.1', 'python-version': '3.7', 'icefall-git-branch': 'gigaspeech_recipe', 'icefall-git-sha1': 'c3993a5-dirty', 'icefall-git-date': 'Mon Mar 21 13:49:39 2022', 'icefall-path': '/userhome/user/guanbo/icefall_decode', 'k2-path': '/opt/conda/lib/python3.7/site-packages/k2-1.14.dev20220408+cuda11.1.torch1.10.0-py3.7-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/userhome/user/guanbo/lhotse/lhotse/__init__.py', 'hostname': 'c8861f400b70d011ec0a3ee069db84328338-chenx8564-0', 'IP address': '10.9.150.55'}, 'epoch': 18, 'avg': 6, 'method': 'attention-decoder', 'num_paths': 1000, 'nbest_scale': 0.5, 'exp_dir': PosixPath('conformer_ctc/exp_500_8_2'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 20, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 1, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'subset': 'XL', 'lazy_load': True, 'small_dev': False}
|
3 |
+
2022-04-09 01:40:42,371 INFO [lexicon.py:176] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2022-04-09 01:40:42,473 INFO [decode_test.py:594] device: cuda:0
|
5 |
+
2022-04-09 01:40:46,249 INFO [decode_test.py:656] Loading pre-compiled G_4_gram.pt
|
6 |
+
2022-04-09 01:40:47,406 INFO [decode_test.py:692] averaging ['conformer_ctc/exp_500_8_2/epoch-13.pt', 'conformer_ctc/exp_500_8_2/epoch-14.pt', 'conformer_ctc/exp_500_8_2/epoch-15.pt', 'conformer_ctc/exp_500_8_2/epoch-16.pt', 'conformer_ctc/exp_500_8_2/epoch-17.pt', 'conformer_ctc/exp_500_8_2/epoch-18.pt']
|
7 |
+
2022-04-09 01:40:53,065 INFO [decode_test.py:699] Number of model parameters: 109226120
|
8 |
+
2022-04-09 01:40:53,065 INFO [asr_datamodule.py:381] About to get test cuts
|
9 |
+
2022-04-09 01:40:56,361 INFO [decode_test.py:497] batch 0/?, cuts processed until now is 3
|
10 |
+
2022-04-09 01:41:24,462 INFO [decode.py:736] Caught exception:
|
11 |
+
CUDA out of memory. Tried to allocate 5.93 GiB (GPU 0; 31.75 GiB total capacity; 27.23 GiB already allocated; 1.90 GiB free; 28.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
12 |
+
|
13 |
+
2022-04-09 01:41:24,462 INFO [decode.py:743] num_arcs before pruning: 324363
|
14 |
+
2022-04-09 01:41:24,462 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
15 |
+
2022-04-09 01:41:24,473 INFO [decode.py:757] num_arcs after pruning: 7174
|
16 |
+
2022-04-09 01:41:40,284 INFO [decode.py:736] Caught exception:
|
17 |
+
CUDA out of memory. Tried to allocate 4.67 GiB (GPU 0; 31.75 GiB total capacity; 25.69 GiB already allocated; 2.92 GiB free; 27.47 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
18 |
+
|
19 |
+
2022-04-09 01:41:40,285 INFO [decode.py:743] num_arcs before pruning: 368362
|
20 |
+
2022-04-09 01:41:40,285 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
21 |
+
2022-04-09 01:41:40,305 INFO [decode.py:757] num_arcs after pruning: 8521
|
22 |
+
2022-04-09 01:42:38,727 INFO [decode.py:736] Caught exception:
|
23 |
+
CUDA out of memory. Tried to allocate 2.18 GiB (GPU 0; 31.75 GiB total capacity; 26.05 GiB already allocated; 1.42 GiB free; 28.98 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
24 |
+
|
25 |
+
2022-04-09 01:42:38,727 INFO [decode.py:743] num_arcs before pruning: 432616
|
26 |
+
2022-04-09 01:42:38,728 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
27 |
+
2022-04-09 01:42:38,736 INFO [decode.py:757] num_arcs after pruning: 9233
|
28 |
+
2022-04-09 01:43:13,573 INFO [decode_test.py:497] batch 100/?, cuts processed until now is 297
|
29 |
+
2022-04-09 01:43:48,362 INFO [decode.py:736] Caught exception:
|
30 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.34 GiB already allocated; 2.20 GiB free; 28.20 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
31 |
+
|
32 |
+
2022-04-09 01:43:48,363 INFO [decode.py:743] num_arcs before pruning: 319907
|
33 |
+
2022-04-09 01:43:48,363 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
34 |
+
2022-04-09 01:43:48,372 INFO [decode.py:757] num_arcs after pruning: 6358
|
35 |
+
2022-04-09 01:43:59,713 INFO [decode.py:736] Caught exception:
|
36 |
+
CUDA out of memory. Tried to allocate 2.74 GiB (GPU 0; 31.75 GiB total capacity; 27.51 GiB already allocated; 2.19 GiB free; 28.20 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
37 |
+
|
38 |
+
2022-04-09 01:43:59,713 INFO [decode.py:743] num_arcs before pruning: 313596
|
39 |
+
2022-04-09 01:43:59,713 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
40 |
+
2022-04-09 01:43:59,724 INFO [decode.py:757] num_arcs after pruning: 8252
|
41 |
+
2022-04-09 01:44:54,463 INFO [decode.py:736] Caught exception:
|
42 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.25 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
43 |
+
|
44 |
+
2022-04-09 01:44:54,463 INFO [decode.py:743] num_arcs before pruning: 353355
|
45 |
+
2022-04-09 01:44:54,463 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
46 |
+
2022-04-09 01:44:54,485 INFO [decode.py:757] num_arcs after pruning: 7520
|
47 |
+
2022-04-09 01:45:20,716 INFO [decode_test.py:497] batch 200/?, cuts processed until now is 570
|
48 |
+
2022-04-09 01:47:19,457 INFO [decode_test.py:497] batch 300/?, cuts processed until now is 806
|
49 |
+
2022-04-09 01:47:38,292 INFO [decode.py:736] Caught exception:
|
50 |
+
CUDA out of memory. Tried to allocate 2.28 GiB (GPU 0; 31.75 GiB total capacity; 26.28 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
51 |
+
|
52 |
+
2022-04-09 01:47:38,293 INFO [decode.py:743] num_arcs before pruning: 596002
|
53 |
+
2022-04-09 01:47:38,293 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
54 |
+
2022-04-09 01:47:38,312 INFO [decode.py:757] num_arcs after pruning: 10745
|
55 |
+
2022-04-09 01:49:18,493 INFO [decode.py:736] Caught exception:
|
56 |
+
|
57 |
+
Some bad things happened. Please read the above error messages and stack
|
58 |
+
trace. If you are using Python, the following command may be helpful:
|
59 |
+
|
60 |
+
gdb --args python /path/to/your/code.py
|
61 |
+
|
62 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
63 |
+
a debug version of k2.).
|
64 |
+
|
65 |
+
If you are unable to fix it, please open an issue at:
|
66 |
+
|
67 |
+
https://github.com/k2-fsa/k2/issues/new
|
68 |
+
|
69 |
+
|
70 |
+
2022-04-09 01:49:18,494 INFO [decode.py:743] num_arcs before pruning: 398202
|
71 |
+
2022-04-09 01:49:18,494 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
72 |
+
2022-04-09 01:49:18,541 INFO [decode.py:757] num_arcs after pruning: 14003
|
73 |
+
2022-04-09 01:49:21,800 INFO [decode_test.py:497] batch 400/?, cuts processed until now is 1082
|
74 |
+
2022-04-09 01:50:58,700 INFO [decode.py:736] Caught exception:
|
75 |
+
CUDA out of memory. Tried to allocate 4.85 GiB (GPU 0; 31.75 GiB total capacity; 25.89 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
76 |
+
|
77 |
+
2022-04-09 01:50:58,701 INFO [decode.py:743] num_arcs before pruning: 398349
|
78 |
+
2022-04-09 01:50:58,701 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
79 |
+
2022-04-09 01:50:58,709 INFO [decode.py:757] num_arcs after pruning: 10321
|
80 |
+
2022-04-09 01:51:31,627 INFO [decode_test.py:497] batch 500/?, cuts processed until now is 1334
|
81 |
+
2022-04-09 01:52:05,232 INFO [decode.py:736] Caught exception:
|
82 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.62 GiB already allocated; 1.47 GiB free; 28.93 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
83 |
+
|
84 |
+
2022-04-09 01:52:05,232 INFO [decode.py:743] num_arcs before pruning: 212665
|
85 |
+
2022-04-09 01:52:05,232 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
86 |
+
2022-04-09 01:52:05,241 INFO [decode.py:757] num_arcs after pruning: 6301
|
87 |
+
2022-04-09 01:53:29,890 INFO [decode.py:736] Caught exception:
|
88 |
+
CUDA out of memory. Tried to allocate 1.91 GiB (GPU 0; 31.75 GiB total capacity; 25.66 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
89 |
+
|
90 |
+
2022-04-09 01:53:29,891 INFO [decode.py:743] num_arcs before pruning: 883555
|
91 |
+
2022-04-09 01:53:29,891 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
92 |
+
2022-04-09 01:53:29,905 INFO [decode.py:757] num_arcs after pruning: 14819
|
93 |
+
2022-04-09 01:53:38,676 INFO [decode_test.py:497] batch 600/?, cuts processed until now is 1651
|
94 |
+
2022-04-09 01:54:57,438 INFO [decode.py:736] Caught exception:
|
95 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.34 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
96 |
+
|
97 |
+
2022-04-09 01:54:57,438 INFO [decode.py:743] num_arcs before pruning: 515795
|
98 |
+
2022-04-09 01:54:57,438 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
99 |
+
2022-04-09 01:54:57,447 INFO [decode.py:757] num_arcs after pruning: 10132
|
100 |
+
2022-04-09 01:55:28,356 INFO [decode.py:736] Caught exception:
|
101 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.46 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
102 |
+
|
103 |
+
2022-04-09 01:55:28,356 INFO [decode.py:743] num_arcs before pruning: 670748
|
104 |
+
2022-04-09 01:55:28,356 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
105 |
+
2022-04-09 01:55:28,365 INFO [decode.py:757] num_arcs after pruning: 10497
|
106 |
+
2022-04-09 01:55:42,238 INFO [decode_test.py:497] batch 700/?, cuts processed until now is 1956
|
107 |
+
2022-04-09 01:57:57,456 INFO [decode_test.py:497] batch 800/?, cuts processed until now is 2238
|
108 |
+
2022-04-09 01:58:04,281 INFO [decode.py:736] Caught exception:
|
109 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
110 |
+
|
111 |
+
2022-04-09 01:58:04,282 INFO [decode.py:743] num_arcs before pruning: 175423
|
112 |
+
2022-04-09 01:58:04,282 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
113 |
+
2022-04-09 01:58:04,296 INFO [decode.py:757] num_arcs after pruning: 7926
|
114 |
+
2022-04-09 01:59:07,916 INFO [decode.py:736] Caught exception:
|
115 |
+
CUDA out of memory. Tried to allocate 4.68 GiB (GPU 0; 31.75 GiB total capacity; 24.40 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
116 |
+
|
117 |
+
2022-04-09 01:59:07,917 INFO [decode.py:743] num_arcs before pruning: 259758
|
118 |
+
2022-04-09 01:59:07,917 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
119 |
+
2022-04-09 01:59:07,928 INFO [decode.py:757] num_arcs after pruning: 6026
|
120 |
+
2022-04-09 02:00:00,623 INFO [decode_test.py:497] batch 900/?, cuts processed until now is 2536
|
121 |
+
2022-04-09 02:01:22,959 INFO [decode.py:736] Caught exception:
|
122 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.44 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
123 |
+
|
124 |
+
2022-04-09 02:01:22,959 INFO [decode.py:743] num_arcs before pruning: 749228
|
125 |
+
2022-04-09 02:01:22,959 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
126 |
+
2022-04-09 02:01:22,968 INFO [decode.py:757] num_arcs after pruning: 23868
|
127 |
+
2022-04-09 02:01:59,449 INFO [decode_test.py:497] batch 1000/?, cuts processed until now is 2824
|
128 |
+
2022-04-09 02:03:05,494 INFO [decode.py:736] Caught exception:
|
129 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.38 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
130 |
+
|
131 |
+
2022-04-09 02:03:05,494 INFO [decode.py:743] num_arcs before pruning: 255135
|
132 |
+
2022-04-09 02:03:05,494 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
133 |
+
2022-04-09 02:03:05,504 INFO [decode.py:757] num_arcs after pruning: 5955
|
134 |
+
2022-04-09 02:03:48,017 INFO [decode.py:736] Caught exception:
|
135 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.61 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
136 |
+
|
137 |
+
2022-04-09 02:03:48,017 INFO [decode.py:743] num_arcs before pruning: 517077
|
138 |
+
2022-04-09 02:03:48,017 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
139 |
+
2022-04-09 02:03:48,026 INFO [decode.py:757] num_arcs after pruning: 7695
|
140 |
+
2022-04-09 02:04:09,806 INFO [decode_test.py:497] batch 1100/?, cuts processed until now is 3105
|
141 |
+
2022-04-09 02:04:31,410 INFO [decode.py:736] Caught exception:
|
142 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
143 |
+
|
144 |
+
2022-04-09 02:04:31,411 INFO [decode.py:743] num_arcs before pruning: 859561
|
145 |
+
2022-04-09 02:04:31,411 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
146 |
+
2022-04-09 02:04:31,422 INFO [decode.py:757] num_arcs after pruning: 13014
|
147 |
+
2022-04-09 02:06:11,496 INFO [decode_test.py:497] batch 1200/?, cuts processed until now is 3401
|
148 |
+
2022-04-09 02:08:10,727 INFO [decode_test.py:497] batch 1300/?, cuts processed until now is 3730
|
149 |
+
2022-04-09 02:10:17,677 INFO [decode_test.py:497] batch 1400/?, cuts processed until now is 4067
|
150 |
+
2022-04-09 02:12:13,175 INFO [decode_test.py:497] batch 1500/?, cuts processed until now is 4329
|
151 |
+
2022-04-09 02:13:02,842 INFO [decode.py:736] Caught exception:
|
152 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.55 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
153 |
+
|
154 |
+
2022-04-09 02:13:02,843 INFO [decode.py:743] num_arcs before pruning: 475511
|
155 |
+
2022-04-09 02:13:02,843 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
156 |
+
2022-04-09 02:13:02,849 INFO [decode.py:757] num_arcs after pruning: 8439
|
157 |
+
2022-04-09 02:13:46,588 INFO [decode.py:736] Caught exception:
|
158 |
+
CUDA out of memory. Tried to allocate 2.37 GiB (GPU 0; 31.75 GiB total capacity; 26.83 GiB already allocated; 1.45 GiB free; 28.94 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
159 |
+
|
160 |
+
2022-04-09 02:13:46,588 INFO [decode.py:743] num_arcs before pruning: 595488
|
161 |
+
2022-04-09 02:13:46,588 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
162 |
+
2022-04-09 02:13:46,598 INFO [decode.py:757] num_arcs after pruning: 13475
|
163 |
+
2022-04-09 02:14:21,206 INFO [decode_test.py:497] batch 1600/?, cuts processed until now is 4598
|
164 |
+
2022-04-09 02:16:42,740 INFO [decode_test.py:497] batch 1700/?, cuts processed until now is 4969
|
165 |
+
2022-04-09 02:17:13,672 INFO [decode.py:736] Caught exception:
|
166 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.39 GiB already allocated; 1.45 GiB free; 28.94 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
167 |
+
|
168 |
+
2022-04-09 02:17:13,673 INFO [decode.py:743] num_arcs before pruning: 615734
|
169 |
+
2022-04-09 02:17:13,673 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
170 |
+
2022-04-09 02:17:13,685 INFO [decode.py:757] num_arcs after pruning: 8684
|
171 |
+
2022-04-09 02:18:54,514 INFO [decode_test.py:497] batch 1800/?, cuts processed until now is 5260
|
172 |
+
2022-04-09 02:18:59,938 INFO [decode.py:736] Caught exception:
|
173 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.36 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
174 |
+
|
175 |
+
2022-04-09 02:18:59,938 INFO [decode.py:743] num_arcs before pruning: 360099
|
176 |
+
2022-04-09 02:18:59,938 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
177 |
+
2022-04-09 02:18:59,949 INFO [decode.py:757] num_arcs after pruning: 6898
|
178 |
+
2022-04-09 02:19:48,186 INFO [decode.py:736] Caught exception:
|
179 |
+
CUDA out of memory. Tried to allocate 6.00 GiB (GPU 0; 31.75 GiB total capacity; 27.15 GiB already allocated; 967.75 MiB free; 29.45 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
180 |
+
|
181 |
+
2022-04-09 02:19:48,186 INFO [decode.py:743] num_arcs before pruning: 168720
|
182 |
+
2022-04-09 02:19:48,186 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
183 |
+
2022-04-09 02:19:48,201 INFO [decode.py:757] num_arcs after pruning: 5346
|
184 |
+
2022-04-09 02:20:52,049 INFO [decode_test.py:497] batch 1900/?, cuts processed until now is 5585
|
185 |
+
2022-04-09 02:22:12,107 INFO [decode.py:736] Caught exception:
|
186 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 973.75 MiB free; 29.44 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
187 |
+
|
188 |
+
2022-04-09 02:22:12,107 INFO [decode.py:743] num_arcs before pruning: 1151735
|
189 |
+
2022-04-09 02:22:12,107 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
190 |
+
2022-04-09 02:22:12,120 INFO [decode.py:757] num_arcs after pruning: 8335
|
191 |
+
2022-04-09 02:23:01,497 INFO [decode_test.py:497] batch 2000/?, cuts processed until now is 5902
|
192 |
+
2022-04-09 02:25:26,356 INFO [decode_test.py:497] batch 2100/?, cuts processed until now is 6219
|
193 |
+
2022-04-09 02:25:56,466 INFO [decode.py:736] Caught exception:
|
194 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 973.75 MiB free; 29.44 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
195 |
+
|
196 |
+
2022-04-09 02:25:56,467 INFO [decode.py:743] num_arcs before pruning: 612804
|
197 |
+
2022-04-09 02:25:56,467 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
198 |
+
2022-04-09 02:25:56,477 INFO [decode.py:757] num_arcs after pruning: 10853
|
199 |
+
2022-04-09 02:27:26,441 INFO [decode_test.py:497] batch 2200/?, cuts processed until now is 6480
|
200 |
+
2022-04-09 02:29:28,073 INFO [decode_test.py:497] batch 2300/?, cuts processed until now is 6768
|
201 |
+
2022-04-09 02:31:41,553 INFO [decode_test.py:497] batch 2400/?, cuts processed until now is 7120
|
202 |
+
2022-04-09 02:31:55,632 INFO [decode.py:736] Caught exception:
|
203 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
204 |
+
|
205 |
+
2022-04-09 02:31:55,632 INFO [decode.py:743] num_arcs before pruning: 411490
|
206 |
+
2022-04-09 02:31:55,632 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
207 |
+
2022-04-09 02:31:55,638 INFO [decode.py:757] num_arcs after pruning: 8626
|
208 |
+
2022-04-09 02:33:22,034 INFO [decode.py:736] Caught exception:
|
209 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
210 |
+
|
211 |
+
2022-04-09 02:33:22,034 INFO [decode.py:743] num_arcs before pruning: 625728
|
212 |
+
2022-04-09 02:33:22,035 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
213 |
+
2022-04-09 02:33:22,043 INFO [decode.py:757] num_arcs after pruning: 9502
|
214 |
+
2022-04-09 02:33:37,663 INFO [decode_test.py:497] batch 2500/?, cuts processed until now is 7387
|
215 |
+
2022-04-09 02:34:18,300 INFO [decode.py:736] Caught exception:
|
216 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
217 |
+
|
218 |
+
2022-04-09 02:34:18,301 INFO [decode.py:743] num_arcs before pruning: 1015956
|
219 |
+
2022-04-09 02:34:18,301 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
220 |
+
2022-04-09 02:34:18,314 INFO [decode.py:757] num_arcs after pruning: 14404
|
221 |
+
2022-04-09 02:34:20,220 INFO [decode.py:841] Caught exception:
|
222 |
+
CUDA out of memory. Tried to allocate 5.58 GiB (GPU 0; 31.75 GiB total capacity; 24.87 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
223 |
+
|
224 |
+
2022-04-09 02:34:20,221 INFO [decode.py:843] num_paths before decreasing: 1000
|
225 |
+
2022-04-09 02:34:20,221 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
226 |
+
2022-04-09 02:34:20,221 INFO [decode.py:858] num_paths after decreasing: 500
|
227 |
+
2022-04-09 02:34:40,089 INFO [decode.py:736] Caught exception:
|
228 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.38 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
229 |
+
|
230 |
+
2022-04-09 02:34:40,089 INFO [decode.py:743] num_arcs before pruning: 570686
|
231 |
+
2022-04-09 02:34:40,089 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
232 |
+
2022-04-09 02:34:40,098 INFO [decode.py:757] num_arcs after pruning: 9182
|
233 |
+
2022-04-09 02:35:50,624 INFO [decode_test.py:497] batch 2600/?, cuts processed until now is 7764
|
234 |
+
2022-04-09 02:36:44,519 INFO [decode.py:736] Caught exception:
|
235 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.61 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
236 |
+
|
237 |
+
2022-04-09 02:36:44,519 INFO [decode.py:743] num_arcs before pruning: 1066267
|
238 |
+
2022-04-09 02:36:44,519 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
239 |
+
2022-04-09 02:36:44,530 INFO [decode.py:757] num_arcs after pruning: 6963
|
240 |
+
2022-04-09 02:38:18,717 INFO [decode_test.py:497] batch 2700/?, cuts processed until now is 8078
|
241 |
+
2022-04-09 02:40:07,021 INFO [decode.py:736] Caught exception:
|
242 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
243 |
+
|
244 |
+
2022-04-09 02:40:07,022 INFO [decode.py:743] num_arcs before pruning: 1023667
|
245 |
+
2022-04-09 02:40:07,022 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
246 |
+
2022-04-09 02:40:07,034 INFO [decode.py:757] num_arcs after pruning: 13090
|
247 |
+
2022-04-09 02:40:25,184 INFO [decode_test.py:497] batch 2800/?, cuts processed until now is 8444
|
248 |
+
2022-04-09 02:41:27,080 INFO [decode.py:736] Caught exception:
|
249 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.32 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
250 |
+
|
251 |
+
2022-04-09 02:41:27,080 INFO [decode.py:743] num_arcs before pruning: 739744
|
252 |
+
2022-04-09 02:41:27,080 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
253 |
+
2022-04-09 02:41:27,093 INFO [decode.py:757] num_arcs after pruning: 9791
|
254 |
+
2022-04-09 02:42:44,319 INFO [decode_test.py:497] batch 2900/?, cuts processed until now is 8765
|
255 |
+
2022-04-09 02:42:44,656 INFO [decode.py:736] Caught exception:
|
256 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.73 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
257 |
+
|
258 |
+
2022-04-09 02:42:44,656 INFO [decode.py:743] num_arcs before pruning: 666168
|
259 |
+
2022-04-09 02:42:44,656 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
260 |
+
2022-04-09 02:42:44,665 INFO [decode.py:757] num_arcs after pruning: 17223
|
261 |
+
2022-04-09 02:43:05,748 INFO [decode.py:736] Caught exception:
|
262 |
+
CUDA out of memory. Tried to allocate 5.60 GiB (GPU 0; 31.75 GiB total capacity; 26.18 GiB already allocated; 1.14 GiB free; 29.26 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
263 |
+
|
264 |
+
2022-04-09 02:43:05,748 INFO [decode.py:743] num_arcs before pruning: 188729
|
265 |
+
2022-04-09 02:43:05,748 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
266 |
+
2022-04-09 02:43:05,762 INFO [decode.py:757] num_arcs after pruning: 8688
|
267 |
+
2022-04-09 02:44:54,469 INFO [decode_test.py:497] batch 3000/?, cuts processed until now is 9050
|
268 |
+
2022-04-09 02:46:55,167 INFO [decode_test.py:497] batch 3100/?, cuts processed until now is 9296
|
269 |
+
2022-04-09 02:47:28,418 INFO [decode.py:736] Caught exception:
|
270 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 20.00 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
271 |
+
|
272 |
+
2022-04-09 02:47:28,419 INFO [decode.py:743] num_arcs before pruning: 160153
|
273 |
+
2022-04-09 02:47:28,419 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
274 |
+
2022-04-09 02:47:28,448 INFO [decode.py:757] num_arcs after pruning: 7778
|
275 |
+
2022-04-09 02:49:21,448 INFO [decode_test.py:497] batch 3200/?, cuts processed until now is 9652
|
276 |
+
2022-04-09 02:50:17,558 INFO [decode.py:736] Caught exception:
|
277 |
+
CUDA out of memory. Tried to allocate 6.13 GiB (GPU 0; 31.75 GiB total capacity; 27.60 GiB already allocated; 895.75 MiB free; 29.52 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
278 |
+
|
279 |
+
2022-04-09 02:50:17,558 INFO [decode.py:743] num_arcs before pruning: 388116
|
280 |
+
2022-04-09 02:50:17,559 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
281 |
+
2022-04-09 02:50:17,565 INFO [decode.py:757] num_arcs after pruning: 10555
|
282 |
+
2022-04-09 02:51:30,675 INFO [decode_test.py:497] batch 3300/?, cuts processed until now is 10071
|
283 |
+
2022-04-09 02:53:49,565 INFO [decode_test.py:497] batch 3400/?, cuts processed until now is 10342
|
284 |
+
2022-04-09 02:55:49,392 INFO [decode_test.py:497] batch 3500/?, cuts processed until now is 10642
|
285 |
+
2022-04-09 02:58:07,518 INFO [decode_test.py:497] batch 3600/?, cuts processed until now is 10951
|
286 |
+
2022-04-09 02:58:16,360 INFO [decode.py:736] Caught exception:
|
287 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.29 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
288 |
+
|
289 |
+
2022-04-09 02:58:16,361 INFO [decode.py:743] num_arcs before pruning: 396714
|
290 |
+
2022-04-09 02:58:16,361 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
291 |
+
2022-04-09 02:58:16,374 INFO [decode.py:757] num_arcs after pruning: 9543
|
292 |
+
2022-04-09 03:00:00,485 INFO [decode_test.py:497] batch 3700/?, cuts processed until now is 11231
|
293 |
+
2022-04-09 03:00:17,600 INFO [decode.py:736] Caught exception:
|
294 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
295 |
+
|
296 |
+
2022-04-09 03:00:17,601 INFO [decode.py:743] num_arcs before pruning: 854366
|
297 |
+
2022-04-09 03:00:17,601 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
298 |
+
2022-04-09 03:00:17,612 INFO [decode.py:757] num_arcs after pruning: 10487
|
299 |
+
2022-04-09 03:00:20,098 INFO [decode.py:736] Caught exception:
|
300 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.68 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
301 |
+
|
302 |
+
2022-04-09 03:00:20,098 INFO [decode.py:743] num_arcs before pruning: 442824
|
303 |
+
2022-04-09 03:00:20,098 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
304 |
+
2022-04-09 03:00:20,108 INFO [decode.py:757] num_arcs after pruning: 5265
|
305 |
+
2022-04-09 03:02:00,114 INFO [decode_test.py:497] batch 3800/?, cuts processed until now is 11509
|
306 |
+
2022-04-09 03:02:11,570 INFO [decode.py:736] Caught exception:
|
307 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.19 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
308 |
+
|
309 |
+
2022-04-09 03:02:11,571 INFO [decode.py:743] num_arcs before pruning: 285638
|
310 |
+
2022-04-09 03:02:11,571 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
311 |
+
2022-04-09 03:02:11,579 INFO [decode.py:757] num_arcs after pruning: 5903
|
312 |
+
2022-04-09 03:04:02,757 INFO [decode_test.py:497] batch 3900/?, cuts processed until now is 11774
|
313 |
+
2022-04-09 03:05:19,989 INFO [decode.py:736] Caught exception:
|
314 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.73 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
315 |
+
|
316 |
+
2022-04-09 03:05:19,990 INFO [decode.py:743] num_arcs before pruning: 637327
|
317 |
+
2022-04-09 03:05:19,990 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
318 |
+
2022-04-09 03:05:19,999 INFO [decode.py:757] num_arcs after pruning: 6357
|
319 |
+
2022-04-09 03:06:01,953 INFO [decode_test.py:497] batch 4000/?, cuts processed until now is 12045
|
320 |
+
2022-04-09 03:07:49,854 INFO [decode_test.py:497] batch 4100/?, cuts processed until now is 12300
|
321 |
+
2022-04-09 03:09:15,137 INFO [decode.py:736] Caught exception:
|
322 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
323 |
+
|
324 |
+
2022-04-09 03:09:15,138 INFO [decode.py:743] num_arcs before pruning: 507733
|
325 |
+
2022-04-09 03:09:15,138 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
326 |
+
2022-04-09 03:09:15,148 INFO [decode.py:757] num_arcs after pruning: 4196
|
327 |
+
2022-04-09 03:09:47,397 INFO [decode.py:736] Caught exception:
|
328 |
+
CUDA out of memory. Tried to allocate 5.86 GiB (GPU 0; 31.75 GiB total capacity; 27.78 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
329 |
+
|
330 |
+
2022-04-09 03:09:47,397 INFO [decode.py:743] num_arcs before pruning: 514118
|
331 |
+
2022-04-09 03:09:47,397 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
332 |
+
2022-04-09 03:09:47,407 INFO [decode.py:757] num_arcs after pruning: 7168
|
333 |
+
2022-04-09 03:10:00,013 INFO [decode_test.py:497] batch 4200/?, cuts processed until now is 12580
|
334 |
+
2022-04-09 03:10:33,411 INFO [decode.py:736] Caught exception:
|
335 |
+
CUDA out of memory. Tried to allocate 2.80 GiB (GPU 0; 31.75 GiB total capacity; 27.70 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
336 |
+
|
337 |
+
2022-04-09 03:10:33,411 INFO [decode.py:743] num_arcs before pruning: 374935
|
338 |
+
2022-04-09 03:10:33,411 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
339 |
+
2022-04-09 03:10:33,418 INFO [decode.py:757] num_arcs after pruning: 10023
|
340 |
+
2022-04-09 03:12:04,333 INFO [decode_test.py:497] batch 4300/?, cuts processed until now is 12807
|
341 |
+
2022-04-09 03:14:06,889 INFO [decode_test.py:497] batch 4400/?, cuts processed until now is 13050
|
342 |
+
2022-04-09 03:14:34,787 INFO [decode.py:736] Caught exception:
|
343 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.47 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
344 |
+
|
345 |
+
2022-04-09 03:14:34,788 INFO [decode.py:743] num_arcs before pruning: 767465
|
346 |
+
2022-04-09 03:14:34,788 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
347 |
+
2022-04-09 03:14:34,797 INFO [decode.py:757] num_arcs after pruning: 19151
|
348 |
+
2022-04-09 03:15:08,864 INFO [decode.py:736] Caught exception:
|
349 |
+
|
350 |
+
Some bad things happened. Please read the above error messages and stack
|
351 |
+
trace. If you are using Python, the following command may be helpful:
|
352 |
+
|
353 |
+
gdb --args python /path/to/your/code.py
|
354 |
+
|
355 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
356 |
+
a debug version of k2.).
|
357 |
+
|
358 |
+
If you are unable to fix it, please open an issue at:
|
359 |
+
|
360 |
+
https://github.com/k2-fsa/k2/issues/new
|
361 |
+
|
362 |
+
|
363 |
+
2022-04-09 03:15:08,864 INFO [decode.py:743] num_arcs before pruning: 123833
|
364 |
+
2022-04-09 03:15:08,864 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
365 |
+
2022-04-09 03:15:08,913 INFO [decode.py:757] num_arcs after pruning: 4150
|
366 |
+
2022-04-09 03:15:34,899 INFO [decode.py:736] Caught exception:
|
367 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.64 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
368 |
+
|
369 |
+
2022-04-09 03:15:34,899 INFO [decode.py:743] num_arcs before pruning: 444800
|
370 |
+
2022-04-09 03:15:34,899 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
371 |
+
2022-04-09 03:15:34,908 INFO [decode.py:757] num_arcs after pruning: 11839
|
372 |
+
2022-04-09 03:16:08,462 INFO [decode_test.py:497] batch 4500/?, cuts processed until now is 13295
|
373 |
+
2022-04-09 03:17:56,946 INFO [decode_test.py:497] batch 4600/?, cuts processed until now is 13593
|
374 |
+
2022-04-09 03:18:16,099 INFO [decode.py:736] Caught exception:
|
375 |
+
CUDA out of memory. Tried to allocate 5.53 GiB (GPU 0; 31.75 GiB total capacity; 26.53 GiB already allocated; 1.12 GiB free; 29.28 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
376 |
+
|
377 |
+
2022-04-09 03:18:16,099 INFO [decode.py:743] num_arcs before pruning: 350609
|
378 |
+
2022-04-09 03:18:16,100 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
379 |
+
2022-04-09 03:18:16,105 INFO [decode.py:757] num_arcs after pruning: 9262
|
380 |
+
2022-04-09 03:19:57,230 INFO [decode_test.py:497] batch 4700/?, cuts processed until now is 13858
|
381 |
+
2022-04-09 03:20:19,775 INFO [decode.py:736] Caught exception:
|
382 |
+
CUDA out of memory. Tried to allocate 4.87 GiB (GPU 0; 31.75 GiB total capacity; 25.78 GiB already allocated; 1.12 GiB free; 29.28 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
383 |
+
|
384 |
+
2022-04-09 03:20:19,775 INFO [decode.py:743] num_arcs before pruning: 375071
|
385 |
+
2022-04-09 03:20:19,775 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
386 |
+
2022-04-09 03:20:19,785 INFO [decode.py:757] num_arcs after pruning: 6365
|
387 |
+
2022-04-09 03:21:29,481 INFO [decode.py:736] Caught exception:
|
388 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 1.12 GiB free; 29.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
389 |
+
|
390 |
+
2022-04-09 03:21:29,481 INFO [decode.py:743] num_arcs before pruning: 872088
|
391 |
+
2022-04-09 03:21:29,481 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
392 |
+
2022-04-09 03:21:29,492 INFO [decode.py:757] num_arcs after pruning: 10043
|
393 |
+
2022-04-09 03:22:01,760 INFO [decode_test.py:497] batch 4800/?, cuts processed until now is 14079
|
394 |
+
2022-04-09 03:24:10,370 INFO [decode_test.py:497] batch 4900/?, cuts processed until now is 14298
|
395 |
+
2022-04-09 03:26:10,811 INFO [decode_test.py:497] batch 5000/?, cuts processed until now is 14515
|
396 |
+
2022-04-09 03:27:46,191 INFO [decode.py:736] Caught exception:
|
397 |
+
|
398 |
+
Some bad things happened. Please read the above error messages and stack
|
399 |
+
trace. If you are using Python, the following command may be helpful:
|
400 |
+
|
401 |
+
gdb --args python /path/to/your/code.py
|
402 |
+
|
403 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
404 |
+
a debug version of k2.).
|
405 |
+
|
406 |
+
If you are unable to fix it, please open an issue at:
|
407 |
+
|
408 |
+
https://github.com/k2-fsa/k2/issues/new
|
409 |
+
|
410 |
+
|
411 |
+
2022-04-09 03:27:46,192 INFO [decode.py:743] num_arcs before pruning: 246382
|
412 |
+
2022-04-09 03:27:46,192 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
413 |
+
2022-04-09 03:27:46,253 INFO [decode.py:757] num_arcs after pruning: 6775
|
414 |
+
2022-04-09 03:28:15,199 INFO [decode_test.py:497] batch 5100/?, cuts processed until now is 14718
|
415 |
+
2022-04-09 03:29:19,807 INFO [decode.py:736] Caught exception:
|
416 |
+
CUDA out of memory. Tried to allocate 6.15 GiB (GPU 0; 31.75 GiB total capacity; 26.67 GiB already allocated; 1.11 GiB free; 29.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
417 |
+
|
418 |
+
2022-04-09 03:29:19,808 INFO [decode.py:743] num_arcs before pruning: 220820
|
419 |
+
2022-04-09 03:29:19,808 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
420 |
+
2022-04-09 03:29:19,815 INFO [decode.py:757] num_arcs after pruning: 13482
|
421 |
+
2022-04-09 03:30:16,045 INFO [decode_test.py:497] batch 5200/?, cuts processed until now is 14930
|
422 |
+
2022-04-09 03:32:12,235 INFO [decode_test.py:497] batch 5300/?, cuts processed until now is 15128
|
423 |
+
2022-04-09 03:33:06,358 INFO [decode.py:736] Caught exception:
|
424 |
+
|
425 |
+
Some bad things happened. Please read the above error messages and stack
|
426 |
+
trace. If you are using Python, the following command may be helpful:
|
427 |
+
|
428 |
+
gdb --args python /path/to/your/code.py
|
429 |
+
|
430 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
431 |
+
a debug version of k2.).
|
432 |
+
|
433 |
+
If you are unable to fix it, please open an issue at:
|
434 |
+
|
435 |
+
https://github.com/k2-fsa/k2/issues/new
|
436 |
+
|
437 |
+
|
438 |
+
2022-04-09 03:33:06,359 INFO [decode.py:743] num_arcs before pruning: 190203
|
439 |
+
2022-04-09 03:33:06,359 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
440 |
+
2022-04-09 03:33:06,413 INFO [decode.py:757] num_arcs after pruning: 6202
|
441 |
+
2022-04-09 03:34:14,862 INFO [decode_test.py:497] batch 5400/?, cuts processed until now is 15327
|
442 |
+
2022-04-09 03:36:18,973 INFO [decode_test.py:497] batch 5500/?, cuts processed until now is 15531
|
443 |
+
2022-04-09 03:38:18,633 INFO [decode_test.py:497] batch 5600/?, cuts processed until now is 15724
|
444 |
+
2022-04-09 03:38:48,490 INFO [decode.py:736] Caught exception:
|
445 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.52 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
446 |
+
|
447 |
+
2022-04-09 03:38:48,491 INFO [decode.py:743] num_arcs before pruning: 554330
|
448 |
+
2022-04-09 03:38:48,491 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
449 |
+
2022-04-09 03:38:48,500 INFO [decode.py:757] num_arcs after pruning: 10730
|
450 |
+
2022-04-09 03:39:51,281 INFO [decode.py:736] Caught exception:
|
451 |
+
CUDA out of memory. Tried to allocate 4.83 GiB (GPU 0; 31.75 GiB total capacity; 25.96 GiB already allocated; 1.31 GiB free; 29.08 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
452 |
+
|
453 |
+
2022-04-09 03:39:51,281 INFO [decode.py:743] num_arcs before pruning: 160031
|
454 |
+
2022-04-09 03:39:51,281 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
455 |
+
2022-04-09 03:39:51,288 INFO [decode.py:757] num_arcs after pruning: 4270
|
456 |
+
2022-04-09 03:40:28,016 INFO [decode_test.py:497] batch 5700/?, cuts processed until now is 15908
|
457 |
+
2022-04-09 03:40:46,608 INFO [decode.py:736] Caught exception:
|
458 |
+
CUDA out of memory. Tried to allocate 2.58 GiB (GPU 0; 31.75 GiB total capacity; 27.28 GiB already allocated; 1.32 GiB free; 29.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
459 |
+
|
460 |
+
2022-04-09 03:40:46,608 INFO [decode.py:743] num_arcs before pruning: 406026
|
461 |
+
2022-04-09 03:40:46,608 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
462 |
+
2022-04-09 03:40:46,616 INFO [decode.py:757] num_arcs after pruning: 11179
|
463 |
+
2022-04-09 03:42:16,464 INFO [decode.py:736] Caught exception:
|
464 |
+
CUDA out of memory. Tried to allocate 2.29 GiB (GPU 0; 31.75 GiB total capacity; 26.71 GiB already allocated; 1.32 GiB free; 29.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
465 |
+
|
466 |
+
2022-04-09 03:42:16,464 INFO [decode.py:743] num_arcs before pruning: 639824
|
467 |
+
2022-04-09 03:42:16,464 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
468 |
+
2022-04-09 03:42:16,476 INFO [decode.py:757] num_arcs after pruning: 5520
|
469 |
+
2022-04-09 03:42:52,683 INFO [decode_test.py:497] batch 5800/?, cuts processed until now is 16094
|
470 |
+
2022-04-09 03:44:51,754 INFO [decode_test.py:497] batch 5900/?, cuts processed until now is 16289
|
471 |
+
2022-04-09 03:46:52,121 INFO [decode_test.py:497] batch 6000/?, cuts processed until now is 16488
|
472 |
+
2022-04-09 03:48:54,739 INFO [decode_test.py:497] batch 6100/?, cuts processed until now is 16661
|
473 |
+
2022-04-09 03:49:24,829 INFO [decode.py:736] Caught exception:
|
474 |
+
CUDA out of memory. Tried to allocate 1.84 GiB (GPU 0; 31.75 GiB total capacity; 28.87 GiB already allocated; 409.75 MiB free; 29.99 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
475 |
+
|
476 |
+
2022-04-09 03:49:24,830 INFO [decode.py:743] num_arcs before pruning: 443401
|
477 |
+
2022-04-09 03:49:24,830 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
478 |
+
2022-04-09 03:49:24,837 INFO [decode.py:757] num_arcs after pruning: 5211
|
479 |
+
2022-04-09 03:50:27,492 INFO [decode.py:736] Caught exception:
|
480 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.35 GiB already allocated; 2.15 GiB free; 28.24 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
481 |
+
|
482 |
+
2022-04-09 03:50:27,493 INFO [decode.py:743] num_arcs before pruning: 361598
|
483 |
+
2022-04-09 03:50:27,493 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
484 |
+
2022-04-09 03:50:27,507 INFO [decode.py:757] num_arcs after pruning: 8660
|
485 |
+
2022-04-09 03:51:02,856 INFO [decode_test.py:497] batch 6200/?, cuts processed until now is 16828
|
486 |
+
2022-04-09 03:53:03,912 INFO [decode_test.py:497] batch 6300/?, cuts processed until now is 17002
|
487 |
+
2022-04-09 03:55:04,964 INFO [decode_test.py:497] batch 6400/?, cuts processed until now is 17181
|
488 |
+
2022-04-09 03:55:08,345 INFO [decode.py:736] Caught exception:
|
489 |
+
CUDA out of memory. Tried to allocate 4.89 GiB (GPU 0; 31.75 GiB total capacity; 26.28 GiB already allocated; 2.16 GiB free; 28.24 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
490 |
+
|
491 |
+
2022-04-09 03:55:08,345 INFO [decode.py:743] num_arcs before pruning: 867262
|
492 |
+
2022-04-09 03:55:08,345 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
493 |
+
2022-04-09 03:55:08,356 INFO [decode.py:757] num_arcs after pruning: 6494
|
494 |
+
2022-04-09 03:56:03,884 INFO [decode.py:736] Caught exception:
|
495 |
+
CUDA out of memory. Tried to allocate 1.90 GiB (GPU 0; 31.75 GiB total capacity; 28.97 GiB already allocated; 1.16 GiB free; 29.23 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
496 |
+
|
497 |
+
2022-04-09 03:56:03,885 INFO [decode.py:743] num_arcs before pruning: 233755
|
498 |
+
2022-04-09 03:56:03,885 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
499 |
+
2022-04-09 03:56:03,910 INFO [decode.py:757] num_arcs after pruning: 5823
|
500 |
+
2022-04-09 03:57:08,774 INFO [decode_test.py:497] batch 6500/?, cuts processed until now is 17347
|
501 |
+
2022-04-09 03:59:01,245 INFO [decode_test.py:497] batch 6600/?, cuts processed until now is 17502
|
502 |
+
2022-04-09 03:59:13,147 INFO [decode.py:736] Caught exception:
|
503 |
+
CUDA out of memory. Tried to allocate 5.80 GiB (GPU 0; 31.75 GiB total capacity; 26.73 GiB already allocated; 1.17 GiB free; 29.22 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
504 |
+
|
505 |
+
2022-04-09 03:59:13,147 INFO [decode.py:743] num_arcs before pruning: 174004
|
506 |
+
2022-04-09 03:59:13,147 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
507 |
+
2022-04-09 03:59:13,155 INFO [decode.py:757] num_arcs after pruning: 6857
|
508 |
+
2022-04-09 04:00:59,687 INFO [decode_test.py:497] batch 6700/?, cuts processed until now is 17661
|
509 |
+
2022-04-09 04:03:01,660 INFO [decode_test.py:497] batch 6800/?, cuts processed until now is 17823
|
510 |
+
2022-04-09 04:04:55,219 INFO [decode_test.py:497] batch 6900/?, cuts processed until now is 17997
|
511 |
+
2022-04-09 04:07:05,841 INFO [decode_test.py:497] batch 7000/?, cuts processed until now is 18159
|
512 |
+
2022-04-09 04:09:04,994 INFO [decode_test.py:497] batch 7100/?, cuts processed until now is 18299
|
513 |
+
2022-04-09 04:11:07,439 INFO [decode_test.py:497] batch 7200/?, cuts processed until now is 18432
|
514 |
+
2022-04-09 04:13:18,126 INFO [decode_test.py:497] batch 7300/?, cuts processed until now is 18552
|
515 |
+
2022-04-09 04:15:23,102 INFO [decode_test.py:497] batch 7400/?, cuts processed until now is 18656
|
516 |
+
2022-04-09 04:17:49,550 INFO [decode_test.py:497] batch 7500/?, cuts processed until now is 18798
|
517 |
+
2022-04-09 04:19:16,128 INFO [decode.py:736] Caught exception:
|
518 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
519 |
+
|
520 |
+
2022-04-09 04:19:16,129 INFO [decode.py:743] num_arcs before pruning: 1155990
|
521 |
+
2022-04-09 04:19:16,129 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
522 |
+
2022-04-09 04:19:16,143 INFO [decode.py:757] num_arcs after pruning: 9141
|
523 |
+
2022-04-09 04:20:19,961 INFO [decode_test.py:497] batch 7600/?, cuts processed until now is 18945
|
524 |
+
2022-04-09 04:22:44,642 INFO [decode_test.py:497] batch 7700/?, cuts processed until now is 19084
|
525 |
+
2022-04-09 04:23:18,184 INFO [decode.py:841] Caught exception:
|
526 |
+
CUDA out of memory. Tried to allocate 1.26 GiB (GPU 0; 31.75 GiB total capacity; 27.36 GiB already allocated; 881.75 MiB free; 29.53 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
527 |
+
|
528 |
+
2022-04-09 04:23:18,184 INFO [decode.py:843] num_paths before decreasing: 1000
|
529 |
+
2022-04-09 04:23:18,184 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
530 |
+
2022-04-09 04:23:18,184 INFO [decode.py:858] num_paths after decreasing: 500
|
531 |
+
2022-04-09 04:24:52,959 INFO [decode.py:736] Caught exception:
|
532 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.53 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
533 |
+
|
534 |
+
2022-04-09 04:24:52,960 INFO [decode.py:743] num_arcs before pruning: 624026
|
535 |
+
2022-04-09 04:24:52,960 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
536 |
+
2022-04-09 04:24:52,972 INFO [decode.py:757] num_arcs after pruning: 10008
|
537 |
+
2022-04-09 04:25:07,718 INFO [decode_test.py:497] batch 7800/?, cuts processed until now is 19232
|
538 |
+
2022-04-09 04:25:31,876 INFO [decode.py:736] Caught exception:
|
539 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
540 |
+
|
541 |
+
2022-04-09 04:25:31,876 INFO [decode.py:743] num_arcs before pruning: 688909
|
542 |
+
2022-04-09 04:25:31,877 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
543 |
+
2022-04-09 04:25:31,887 INFO [decode.py:757] num_arcs after pruning: 8886
|
544 |
+
2022-04-09 04:25:57,970 INFO [decode.py:736] Caught exception:
|
545 |
+
CUDA out of memory. Tried to allocate 5.04 GiB (GPU 0; 31.75 GiB total capacity; 25.95 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
546 |
+
|
547 |
+
2022-04-09 04:25:57,971 INFO [decode.py:743] num_arcs before pruning: 891176
|
548 |
+
2022-04-09 04:25:57,971 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
549 |
+
2022-04-09 04:25:57,982 INFO [decode.py:757] num_arcs after pruning: 10106
|
550 |
+
2022-04-09 04:26:19,609 INFO [decode.py:736] Caught exception:
|
551 |
+
CUDA out of memory. Tried to allocate 2.63 GiB (GPU 0; 31.75 GiB total capacity; 27.60 GiB already allocated; 327.75 MiB free; 30.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
552 |
+
|
553 |
+
2022-04-09 04:26:19,609 INFO [decode.py:743] num_arcs before pruning: 415376
|
554 |
+
2022-04-09 04:26:19,609 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
555 |
+
2022-04-09 04:26:19,620 INFO [decode.py:757] num_arcs after pruning: 7771
|
556 |
+
2022-04-09 04:27:33,059 INFO [decode_test.py:497] batch 7900/?, cuts processed until now is 19375
|
557 |
+
2022-04-09 04:29:43,649 INFO [decode_test.py:497] batch 8000/?, cuts processed until now is 19510
|
558 |
+
2022-04-09 04:30:20,590 INFO [decode.py:736] Caught exception:
|
559 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.65 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
560 |
+
|
561 |
+
2022-04-09 04:30:20,591 INFO [decode.py:743] num_arcs before pruning: 330767
|
562 |
+
2022-04-09 04:30:20,591 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
563 |
+
2022-04-09 04:30:20,606 INFO [decode.py:757] num_arcs after pruning: 5820
|
564 |
+
2022-04-09 04:31:55,818 INFO [decode_test.py:497] batch 8100/?, cuts processed until now is 19643
|
565 |
+
2022-04-09 04:34:11,720 INFO [decode_test.py:497] batch 8200/?, cuts processed until now is 19776
|
566 |
+
2022-04-09 04:35:04,147 INFO [decode.py:736] Caught exception:
|
567 |
+
CUDA out of memory. Tried to allocate 4.49 GiB (GPU 0; 31.75 GiB total capacity; 24.38 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
568 |
+
|
569 |
+
2022-04-09 04:35:04,147 INFO [decode.py:743] num_arcs before pruning: 533967
|
570 |
+
2022-04-09 04:35:04,147 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
571 |
+
2022-04-09 04:35:04,157 INFO [decode.py:757] num_arcs after pruning: 3449
|
572 |
+
2022-04-09 04:36:15,595 INFO [decode.py:736] Caught exception:
|
573 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.67 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
574 |
+
|
575 |
+
2022-04-09 04:36:15,595 INFO [decode.py:743] num_arcs before pruning: 397138
|
576 |
+
2022-04-09 04:36:15,596 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
577 |
+
2022-04-09 04:36:15,605 INFO [decode.py:757] num_arcs after pruning: 6775
|
578 |
+
2022-04-09 04:36:31,844 INFO [decode_test.py:497] batch 8300/?, cuts processed until now is 19882
|
579 |
+
2022-04-09 04:37:04,130 INFO [decode.py:736] Caught exception:
|
580 |
+
|
581 |
+
Some bad things happened. Please read the above error messages and stack
|
582 |
+
trace. If you are using Python, the following command may be helpful:
|
583 |
+
|
584 |
+
gdb --args python /path/to/your/code.py
|
585 |
+
|
586 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
587 |
+
a debug version of k2.).
|
588 |
+
|
589 |
+
If you are unable to fix it, please open an issue at:
|
590 |
+
|
591 |
+
https://github.com/k2-fsa/k2/issues/new
|
592 |
+
|
593 |
+
|
594 |
+
2022-04-09 04:37:04,130 INFO [decode.py:743] num_arcs before pruning: 456591
|
595 |
+
2022-04-09 04:37:04,130 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
596 |
+
2022-04-09 04:37:04,180 INFO [decode.py:757] num_arcs after pruning: 5275
|
597 |
+
2022-04-09 04:57:33,432 INFO [decode_test.py:567]
|
598 |
+
For test, WER of different settings are:
|
599 |
+
ngram_lm_scale_0.3_attention_scale_0.7 10.58 best for test
|
600 |
+
ngram_lm_scale_0.5_attention_scale_1.3 10.58
|
601 |
+
ngram_lm_scale_0.3_attention_scale_0.5 10.59
|
602 |
+
ngram_lm_scale_0.3_attention_scale_0.6 10.59
|
603 |
+
ngram_lm_scale_0.3_attention_scale_0.9 10.59
|
604 |
+
ngram_lm_scale_0.3_attention_scale_1.0 10.59
|
605 |
+
ngram_lm_scale_0.3_attention_scale_1.1 10.59
|
606 |
+
ngram_lm_scale_0.3_attention_scale_1.2 10.59
|
607 |
+
ngram_lm_scale_0.3_attention_scale_1.3 10.59
|
608 |
+
ngram_lm_scale_0.5_attention_scale_1.0 10.59
|
609 |
+
ngram_lm_scale_0.5_attention_scale_1.1 10.59
|
610 |
+
ngram_lm_scale_0.5_attention_scale_1.2 10.59
|
611 |
+
ngram_lm_scale_0.5_attention_scale_1.5 10.59
|
612 |
+
ngram_lm_scale_0.5_attention_scale_1.7 10.59
|
613 |
+
ngram_lm_scale_0.5_attention_scale_1.9 10.59
|
614 |
+
ngram_lm_scale_0.5_attention_scale_2.0 10.59
|
615 |
+
ngram_lm_scale_0.5_attention_scale_2.1 10.59
|
616 |
+
ngram_lm_scale_0.5_attention_scale_2.2 10.59
|
617 |
+
ngram_lm_scale_0.5_attention_scale_2.3 10.59
|
618 |
+
ngram_lm_scale_0.6_attention_scale_1.9 10.59
|
619 |
+
ngram_lm_scale_0.6_attention_scale_2.0 10.59
|
620 |
+
ngram_lm_scale_0.6_attention_scale_2.1 10.59
|
621 |
+
ngram_lm_scale_0.6_attention_scale_2.2 10.59
|
622 |
+
ngram_lm_scale_0.6_attention_scale_2.3 10.59
|
623 |
+
ngram_lm_scale_0.6_attention_scale_2.5 10.59
|
624 |
+
ngram_lm_scale_0.3_attention_scale_1.5 10.6
|
625 |
+
ngram_lm_scale_0.3_attention_scale_1.7 10.6
|
626 |
+
ngram_lm_scale_0.3_attention_scale_1.9 10.6
|
627 |
+
ngram_lm_scale_0.3_attention_scale_2.0 10.6
|
628 |
+
ngram_lm_scale_0.3_attention_scale_2.1 10.6
|
629 |
+
ngram_lm_scale_0.3_attention_scale_2.2 10.6
|
630 |
+
ngram_lm_scale_0.3_attention_scale_2.3 10.6
|
631 |
+
ngram_lm_scale_0.3_attention_scale_2.5 10.6
|
632 |
+
ngram_lm_scale_0.5_attention_scale_0.9 10.6
|
633 |
+
ngram_lm_scale_0.5_attention_scale_2.5 10.6
|
634 |
+
ngram_lm_scale_0.5_attention_scale_3.0 10.6
|
635 |
+
ngram_lm_scale_0.6_attention_scale_1.3 10.6
|
636 |
+
ngram_lm_scale_0.6_attention_scale_1.5 10.6
|
637 |
+
ngram_lm_scale_0.6_attention_scale_1.7 10.6
|
638 |
+
ngram_lm_scale_0.6_attention_scale_3.0 10.6
|
639 |
+
ngram_lm_scale_0.3_attention_scale_0.3 10.61
|
640 |
+
ngram_lm_scale_0.3_attention_scale_3.0 10.61
|
641 |
+
ngram_lm_scale_0.5_attention_scale_4.0 10.61
|
642 |
+
ngram_lm_scale_0.5_attention_scale_5.0 10.61
|
643 |
+
ngram_lm_scale_0.6_attention_scale_1.2 10.61
|
644 |
+
ngram_lm_scale_0.6_attention_scale_4.0 10.61
|
645 |
+
ngram_lm_scale_0.6_attention_scale_5.0 10.61
|
646 |
+
ngram_lm_scale_0.7_attention_scale_1.7 10.61
|
647 |
+
ngram_lm_scale_0.7_attention_scale_1.9 10.61
|
648 |
+
ngram_lm_scale_0.7_attention_scale_2.0 10.61
|
649 |
+
ngram_lm_scale_0.7_attention_scale_2.1 10.61
|
650 |
+
ngram_lm_scale_0.7_attention_scale_2.2 10.61
|
651 |
+
ngram_lm_scale_0.7_attention_scale_2.3 10.61
|
652 |
+
ngram_lm_scale_0.7_attention_scale_2.5 10.61
|
653 |
+
ngram_lm_scale_0.7_attention_scale_3.0 10.61
|
654 |
+
ngram_lm_scale_0.7_attention_scale_4.0 10.61
|
655 |
+
ngram_lm_scale_0.7_attention_scale_5.0 10.61
|
656 |
+
ngram_lm_scale_0.1_attention_scale_1.1 10.62
|
657 |
+
ngram_lm_scale_0.3_attention_scale_4.0 10.62
|
658 |
+
ngram_lm_scale_0.3_attention_scale_5.0 10.62
|
659 |
+
ngram_lm_scale_0.5_attention_scale_0.7 10.62
|
660 |
+
ngram_lm_scale_0.6_attention_scale_1.0 10.62
|
661 |
+
ngram_lm_scale_0.6_attention_scale_1.1 10.62
|
662 |
+
ngram_lm_scale_0.7_attention_scale_1.5 10.62
|
663 |
+
ngram_lm_scale_0.9_attention_scale_3.0 10.62
|
664 |
+
ngram_lm_scale_0.9_attention_scale_4.0 10.62
|
665 |
+
ngram_lm_scale_0.9_attention_scale_5.0 10.62
|
666 |
+
ngram_lm_scale_1.0_attention_scale_4.0 10.62
|
667 |
+
ngram_lm_scale_1.1_attention_scale_5.0 10.62
|
668 |
+
ngram_lm_scale_0.05_attention_scale_1.1 10.63
|
669 |
+
ngram_lm_scale_0.05_attention_scale_1.2 10.63
|
670 |
+
ngram_lm_scale_0.08_attention_scale_0.9 10.63
|
671 |
+
ngram_lm_scale_0.08_attention_scale_1.0 10.63
|
672 |
+
ngram_lm_scale_0.08_attention_scale_1.1 10.63
|
673 |
+
ngram_lm_scale_0.08_attention_scale_1.2 10.63
|
674 |
+
ngram_lm_scale_0.08_attention_scale_1.3 10.63
|
675 |
+
ngram_lm_scale_0.08_attention_scale_1.9 10.63
|
676 |
+
ngram_lm_scale_0.08_attention_scale_2.0 10.63
|
677 |
+
ngram_lm_scale_0.08_attention_scale_2.1 10.63
|
678 |
+
ngram_lm_scale_0.08_attention_scale_2.2 10.63
|
679 |
+
ngram_lm_scale_0.08_attention_scale_2.3 10.63
|
680 |
+
ngram_lm_scale_0.08_attention_scale_3.0 10.63
|
681 |
+
ngram_lm_scale_0.1_attention_scale_0.5 10.63
|
682 |
+
ngram_lm_scale_0.1_attention_scale_0.6 10.63
|
683 |
+
ngram_lm_scale_0.1_attention_scale_0.7 10.63
|
684 |
+
ngram_lm_scale_0.1_attention_scale_0.9 10.63
|
685 |
+
ngram_lm_scale_0.1_attention_scale_1.0 10.63
|
686 |
+
ngram_lm_scale_0.1_attention_scale_1.2 10.63
|
687 |
+
ngram_lm_scale_0.1_attention_scale_1.3 10.63
|
688 |
+
ngram_lm_scale_0.1_attention_scale_1.7 10.63
|
689 |
+
ngram_lm_scale_0.1_attention_scale_1.9 10.63
|
690 |
+
ngram_lm_scale_0.1_attention_scale_2.0 10.63
|
691 |
+
ngram_lm_scale_0.1_attention_scale_2.1 10.63
|
692 |
+
ngram_lm_scale_0.1_attention_scale_2.2 10.63
|
693 |
+
ngram_lm_scale_0.1_attention_scale_2.3 10.63
|
694 |
+
ngram_lm_scale_0.1_attention_scale_2.5 10.63
|
695 |
+
ngram_lm_scale_0.1_attention_scale_3.0 10.63
|
696 |
+
ngram_lm_scale_0.1_attention_scale_5.0 10.63
|
697 |
+
ngram_lm_scale_0.5_attention_scale_0.6 10.63
|
698 |
+
ngram_lm_scale_0.6_attention_scale_0.9 10.63
|
699 |
+
ngram_lm_scale_0.9_attention_scale_2.3 10.63
|
700 |
+
ngram_lm_scale_0.9_attention_scale_2.5 10.63
|
701 |
+
ngram_lm_scale_1.0_attention_scale_5.0 10.63
|
702 |
+
ngram_lm_scale_1.2_attention_scale_5.0 10.63
|
703 |
+
ngram_lm_scale_0.01_attention_scale_0.9 10.64
|
704 |
+
ngram_lm_scale_0.01_attention_scale_1.0 10.64
|
705 |
+
ngram_lm_scale_0.01_attention_scale_1.1 10.64
|
706 |
+
ngram_lm_scale_0.01_attention_scale_1.2 10.64
|
707 |
+
ngram_lm_scale_0.01_attention_scale_4.0 10.64
|
708 |
+
ngram_lm_scale_0.01_attention_scale_5.0 10.64
|
709 |
+
ngram_lm_scale_0.05_attention_scale_0.5 10.64
|
710 |
+
ngram_lm_scale_0.05_attention_scale_0.6 10.64
|
711 |
+
ngram_lm_scale_0.05_attention_scale_0.7 10.64
|
712 |
+
ngram_lm_scale_0.05_attention_scale_0.9 10.64
|
713 |
+
ngram_lm_scale_0.05_attention_scale_1.0 10.64
|
714 |
+
ngram_lm_scale_0.05_attention_scale_1.3 10.64
|
715 |
+
ngram_lm_scale_0.05_attention_scale_1.5 10.64
|
716 |
+
ngram_lm_scale_0.05_attention_scale_1.7 10.64
|
717 |
+
ngram_lm_scale_0.05_attention_scale_1.9 10.64
|
718 |
+
ngram_lm_scale_0.05_attention_scale_2.0 10.64
|
719 |
+
ngram_lm_scale_0.05_attention_scale_2.1 10.64
|
720 |
+
ngram_lm_scale_0.05_attention_scale_2.2 10.64
|
721 |
+
ngram_lm_scale_0.05_attention_scale_2.3 10.64
|
722 |
+
ngram_lm_scale_0.05_attention_scale_2.5 10.64
|
723 |
+
ngram_lm_scale_0.05_attention_scale_3.0 10.64
|
724 |
+
ngram_lm_scale_0.05_attention_scale_4.0 10.64
|
725 |
+
ngram_lm_scale_0.05_attention_scale_5.0 10.64
|
726 |
+
ngram_lm_scale_0.08_attention_scale_0.5 10.64
|
727 |
+
ngram_lm_scale_0.08_attention_scale_0.6 10.64
|
728 |
+
ngram_lm_scale_0.08_attention_scale_0.7 10.64
|
729 |
+
ngram_lm_scale_0.08_attention_scale_1.5 10.64
|
730 |
+
ngram_lm_scale_0.08_attention_scale_1.7 10.64
|
731 |
+
ngram_lm_scale_0.08_attention_scale_2.5 10.64
|
732 |
+
ngram_lm_scale_0.08_attention_scale_4.0 10.64
|
733 |
+
ngram_lm_scale_0.08_attention_scale_5.0 10.64
|
734 |
+
ngram_lm_scale_0.1_attention_scale_0.3 10.64
|
735 |
+
ngram_lm_scale_0.1_attention_scale_1.5 10.64
|
736 |
+
ngram_lm_scale_0.1_attention_scale_4.0 10.64
|
737 |
+
ngram_lm_scale_0.7_attention_scale_1.3 10.64
|
738 |
+
ngram_lm_scale_0.9_attention_scale_2.2 10.64
|
739 |
+
ngram_lm_scale_1.0_attention_scale_3.0 10.64
|
740 |
+
ngram_lm_scale_1.1_attention_scale_4.0 10.64
|
741 |
+
ngram_lm_scale_1.3_attention_scale_5.0 10.64
|
742 |
+
ngram_lm_scale_0.01_attention_scale_0.6 10.65
|
743 |
+
ngram_lm_scale_0.01_attention_scale_0.7 10.65
|
744 |
+
ngram_lm_scale_0.01_attention_scale_1.3 10.65
|
745 |
+
ngram_lm_scale_0.01_attention_scale_1.5 10.65
|
746 |
+
ngram_lm_scale_0.01_attention_scale_1.7 10.65
|
747 |
+
ngram_lm_scale_0.01_attention_scale_1.9 10.65
|
748 |
+
ngram_lm_scale_0.01_attention_scale_2.0 10.65
|
749 |
+
ngram_lm_scale_0.01_attention_scale_2.1 10.65
|
750 |
+
ngram_lm_scale_0.01_attention_scale_2.2 10.65
|
751 |
+
ngram_lm_scale_0.01_attention_scale_2.3 10.65
|
752 |
+
ngram_lm_scale_0.01_attention_scale_2.5 10.65
|
753 |
+
ngram_lm_scale_0.01_attention_scale_3.0 10.65
|
754 |
+
ngram_lm_scale_0.08_attention_scale_0.3 10.65
|
755 |
+
ngram_lm_scale_0.5_attention_scale_0.5 10.65
|
756 |
+
ngram_lm_scale_0.6_attention_scale_0.7 10.65
|
757 |
+
ngram_lm_scale_0.7_attention_scale_1.1 10.65
|
758 |
+
ngram_lm_scale_0.7_attention_scale_1.2 10.65
|
759 |
+
ngram_lm_scale_0.9_attention_scale_2.1 10.65
|
760 |
+
ngram_lm_scale_1.2_attention_scale_4.0 10.65
|
761 |
+
ngram_lm_scale_0.05_attention_scale_0.3 10.66
|
762 |
+
ngram_lm_scale_0.7_attention_scale_1.0 10.66
|
763 |
+
ngram_lm_scale_0.9_attention_scale_1.9 10.66
|
764 |
+
ngram_lm_scale_0.9_attention_scale_2.0 10.66
|
765 |
+
ngram_lm_scale_1.0_attention_scale_2.5 10.66
|
766 |
+
ngram_lm_scale_1.1_attention_scale_3.0 10.66
|
767 |
+
ngram_lm_scale_0.01_attention_scale_0.5 10.67
|
768 |
+
ngram_lm_scale_0.1_attention_scale_0.08 10.67
|
769 |
+
ngram_lm_scale_0.1_attention_scale_0.1 10.67
|
770 |
+
ngram_lm_scale_0.6_attention_scale_0.6 10.67
|
771 |
+
ngram_lm_scale_0.9_attention_scale_1.7 10.67
|
772 |
+
ngram_lm_scale_1.0_attention_scale_2.2 10.67
|
773 |
+
ngram_lm_scale_1.0_attention_scale_2.3 10.67
|
774 |
+
ngram_lm_scale_1.3_attention_scale_4.0 10.67
|
775 |
+
ngram_lm_scale_1.5_attention_scale_5.0 10.67
|
776 |
+
ngram_lm_scale_0.01_attention_scale_0.3 10.68
|
777 |
+
ngram_lm_scale_0.08_attention_scale_0.08 10.68
|
778 |
+
ngram_lm_scale_0.08_attention_scale_0.1 10.68
|
779 |
+
ngram_lm_scale_0.3_attention_scale_0.08 10.68
|
780 |
+
ngram_lm_scale_0.3_attention_scale_0.1 10.68
|
781 |
+
ngram_lm_scale_0.7_attention_scale_0.9 10.68
|
782 |
+
ngram_lm_scale_1.0_attention_scale_2.0 10.68
|
783 |
+
ngram_lm_scale_1.0_attention_scale_2.1 10.68
|
784 |
+
ngram_lm_scale_1.1_attention_scale_2.5 10.68
|
785 |
+
ngram_lm_scale_1.2_attention_scale_3.0 10.68
|
786 |
+
ngram_lm_scale_0.1_attention_scale_0.05 10.69
|
787 |
+
ngram_lm_scale_0.5_attention_scale_0.3 10.69
|
788 |
+
ngram_lm_scale_0.9_attention_scale_1.5 10.69
|
789 |
+
ngram_lm_scale_1.0_attention_scale_1.9 10.69
|
790 |
+
ngram_lm_scale_1.1_attention_scale_2.3 10.69
|
791 |
+
ngram_lm_scale_0.05_attention_scale_0.1 10.7
|
792 |
+
ngram_lm_scale_0.08_attention_scale_0.05 10.7
|
793 |
+
ngram_lm_scale_0.3_attention_scale_0.05 10.7
|
794 |
+
ngram_lm_scale_0.6_attention_scale_0.5 10.7
|
795 |
+
ngram_lm_scale_1.1_attention_scale_2.2 10.7
|
796 |
+
ngram_lm_scale_1.5_attention_scale_4.0 10.7
|
797 |
+
ngram_lm_scale_1.7_attention_scale_5.0 10.7
|
798 |
+
ngram_lm_scale_0.05_attention_scale_0.08 10.71
|
799 |
+
ngram_lm_scale_1.1_attention_scale_2.1 10.71
|
800 |
+
ngram_lm_scale_1.2_attention_scale_2.5 10.71
|
801 |
+
ngram_lm_scale_1.3_attention_scale_3.0 10.71
|
802 |
+
ngram_lm_scale_0.01_attention_scale_0.1 10.72
|
803 |
+
ngram_lm_scale_0.05_attention_scale_0.05 10.72
|
804 |
+
ngram_lm_scale_0.08_attention_scale_0.01 10.72
|
805 |
+
ngram_lm_scale_0.1_attention_scale_0.01 10.72
|
806 |
+
ngram_lm_scale_0.3_attention_scale_0.01 10.72
|
807 |
+
ngram_lm_scale_0.7_attention_scale_0.7 10.72
|
808 |
+
ngram_lm_scale_0.9_attention_scale_1.3 10.72
|
809 |
+
ngram_lm_scale_1.0_attention_scale_1.7 10.72
|
810 |
+
ngram_lm_scale_1.1_attention_scale_2.0 10.72
|
811 |
+
ngram_lm_scale_0.01_attention_scale_0.08 10.73
|
812 |
+
ngram_lm_scale_0.9_attention_scale_1.2 10.73
|
813 |
+
ngram_lm_scale_1.1_attention_scale_1.9 10.73
|
814 |
+
ngram_lm_scale_1.2_attention_scale_2.3 10.73
|
815 |
+
ngram_lm_scale_1.0_attention_scale_1.5 10.74
|
816 |
+
ngram_lm_scale_1.2_attention_scale_2.2 10.74
|
817 |
+
ngram_lm_scale_1.3_attention_scale_2.5 10.74
|
818 |
+
ngram_lm_scale_1.9_attention_scale_5.0 10.74
|
819 |
+
ngram_lm_scale_0.01_attention_scale_0.05 10.75
|
820 |
+
ngram_lm_scale_0.05_attention_scale_0.01 10.75
|
821 |
+
ngram_lm_scale_0.7_attention_scale_0.6 10.75
|
822 |
+
ngram_lm_scale_0.9_attention_scale_1.1 10.75
|
823 |
+
ngram_lm_scale_1.1_attention_scale_1.7 10.75
|
824 |
+
ngram_lm_scale_1.2_attention_scale_2.1 10.75
|
825 |
+
ngram_lm_scale_1.7_attention_scale_4.0 10.75
|
826 |
+
ngram_lm_scale_1.2_attention_scale_2.0 10.76
|
827 |
+
ngram_lm_scale_1.3_attention_scale_2.3 10.76
|
828 |
+
ngram_lm_scale_2.0_attention_scale_5.0 10.76
|
829 |
+
ngram_lm_scale_1.0_attention_scale_1.3 10.77
|
830 |
+
ngram_lm_scale_1.2_attention_scale_1.9 10.77
|
831 |
+
ngram_lm_scale_1.5_attention_scale_3.0 10.77
|
832 |
+
ngram_lm_scale_0.01_attention_scale_0.01 10.78
|
833 |
+
ngram_lm_scale_0.6_attention_scale_0.3 10.78
|
834 |
+
ngram_lm_scale_0.7_attention_scale_0.5 10.78
|
835 |
+
ngram_lm_scale_0.9_attention_scale_1.0 10.78
|
836 |
+
ngram_lm_scale_2.1_attention_scale_5.0 10.78
|
837 |
+
ngram_lm_scale_1.1_attention_scale_1.5 10.79
|
838 |
+
ngram_lm_scale_1.3_attention_scale_2.2 10.79
|
839 |
+
ngram_lm_scale_0.5_attention_scale_0.1 10.8
|
840 |
+
ngram_lm_scale_1.0_attention_scale_1.2 10.8
|
841 |
+
ngram_lm_scale_1.3_attention_scale_2.1 10.8
|
842 |
+
ngram_lm_scale_1.9_attention_scale_4.0 10.8
|
843 |
+
ngram_lm_scale_2.2_attention_scale_5.0 10.8
|
844 |
+
ngram_lm_scale_0.5_attention_scale_0.08 10.81
|
845 |
+
ngram_lm_scale_0.9_attention_scale_0.9 10.81
|
846 |
+
ngram_lm_scale_1.2_attention_scale_1.7 10.81
|
847 |
+
ngram_lm_scale_1.3_attention_scale_2.0 10.81
|
848 |
+
ngram_lm_scale_1.0_attention_scale_1.1 10.82
|
849 |
+
ngram_lm_scale_0.5_attention_scale_0.05 10.83
|
850 |
+
ngram_lm_scale_1.1_attention_scale_1.3 10.83
|
851 |
+
ngram_lm_scale_1.3_attention_scale_1.9 10.83
|
852 |
+
ngram_lm_scale_1.5_attention_scale_2.5 10.84
|
853 |
+
ngram_lm_scale_2.3_attention_scale_5.0 10.84
|
854 |
+
ngram_lm_scale_1.0_attention_scale_1.0 10.85
|
855 |
+
ngram_lm_scale_1.2_attention_scale_1.5 10.85
|
856 |
+
ngram_lm_scale_2.0_attention_scale_4.0 10.85
|
857 |
+
ngram_lm_scale_1.1_attention_scale_1.2 10.86
|
858 |
+
ngram_lm_scale_1.7_attention_scale_3.0 10.86
|
859 |
+
ngram_lm_scale_0.5_attention_scale_0.01 10.87
|
860 |
+
ngram_lm_scale_1.5_attention_scale_2.3 10.87
|
861 |
+
ngram_lm_scale_0.7_attention_scale_0.3 10.88
|
862 |
+
ngram_lm_scale_0.9_attention_scale_0.7 10.88
|
863 |
+
ngram_lm_scale_1.3_attention_scale_1.7 10.88
|
864 |
+
ngram_lm_scale_1.0_attention_scale_0.9 10.89
|
865 |
+
ngram_lm_scale_1.5_attention_scale_2.2 10.89
|
866 |
+
ngram_lm_scale_2.1_attention_scale_4.0 10.89
|
867 |
+
ngram_lm_scale_1.1_attention_scale_1.1 10.91
|
868 |
+
ngram_lm_scale_0.6_attention_scale_0.1 10.92
|
869 |
+
ngram_lm_scale_0.9_attention_scale_0.6 10.92
|
870 |
+
ngram_lm_scale_1.5_attention_scale_2.1 10.92
|
871 |
+
ngram_lm_scale_1.2_attention_scale_1.3 10.93
|
872 |
+
ngram_lm_scale_2.5_attention_scale_5.0 10.93
|
873 |
+
ngram_lm_scale_0.6_attention_scale_0.08 10.94
|
874 |
+
ngram_lm_scale_2.2_attention_scale_4.0 10.94
|
875 |
+
ngram_lm_scale_1.1_attention_scale_1.0 10.95
|
876 |
+
ngram_lm_scale_1.3_attention_scale_1.5 10.95
|
877 |
+
ngram_lm_scale_1.5_attention_scale_2.0 10.96
|
878 |
+
ngram_lm_scale_1.2_attention_scale_1.2 10.97
|
879 |
+
ngram_lm_scale_1.7_attention_scale_2.5 10.97
|
880 |
+
ngram_lm_scale_0.6_attention_scale_0.05 10.98
|
881 |
+
ngram_lm_scale_1.9_attention_scale_3.0 10.98
|
882 |
+
ngram_lm_scale_1.0_attention_scale_0.7 10.99
|
883 |
+
ngram_lm_scale_1.5_attention_scale_1.9 10.99
|
884 |
+
ngram_lm_scale_2.3_attention_scale_4.0 10.99
|
885 |
+
ngram_lm_scale_0.9_attention_scale_0.5 11.0
|
886 |
+
ngram_lm_scale_1.1_attention_scale_0.9 11.0
|
887 |
+
ngram_lm_scale_0.6_attention_scale_0.01 11.02
|
888 |
+
ngram_lm_scale_1.2_attention_scale_1.1 11.02
|
889 |
+
ngram_lm_scale_1.7_attention_scale_2.3 11.03
|
890 |
+
ngram_lm_scale_1.3_attention_scale_1.3 11.05
|
891 |
+
ngram_lm_scale_2.0_attention_scale_3.0 11.05
|
892 |
+
ngram_lm_scale_1.7_attention_scale_2.2 11.07
|
893 |
+
ngram_lm_scale_1.0_attention_scale_0.6 11.08
|
894 |
+
ngram_lm_scale_1.5_attention_scale_1.7 11.08
|
895 |
+
ngram_lm_scale_1.2_attention_scale_1.0 11.09
|
896 |
+
ngram_lm_scale_0.7_attention_scale_0.1 11.1
|
897 |
+
ngram_lm_scale_1.3_attention_scale_1.2 11.1
|
898 |
+
ngram_lm_scale_1.7_attention_scale_2.1 11.11
|
899 |
+
ngram_lm_scale_2.1_attention_scale_3.0 11.12
|
900 |
+
ngram_lm_scale_2.5_attention_scale_4.0 11.12
|
901 |
+
ngram_lm_scale_0.7_attention_scale_0.08 11.13
|
902 |
+
ngram_lm_scale_1.9_attention_scale_2.5 11.13
|
903 |
+
ngram_lm_scale_1.7_attention_scale_2.0 11.14
|
904 |
+
ngram_lm_scale_1.2_attention_scale_0.9 11.16
|
905 |
+
ngram_lm_scale_1.1_attention_scale_0.7 11.17
|
906 |
+
ngram_lm_scale_1.3_attention_scale_1.1 11.17
|
907 |
+
ngram_lm_scale_3.0_attention_scale_5.0 11.17
|
908 |
+
ngram_lm_scale_0.7_attention_scale_0.05 11.18
|
909 |
+
ngram_lm_scale_1.5_attention_scale_1.5 11.18
|
910 |
+
ngram_lm_scale_1.0_attention_scale_0.5 11.19
|
911 |
+
ngram_lm_scale_1.7_attention_scale_1.9 11.2
|
912 |
+
ngram_lm_scale_2.2_attention_scale_3.0 11.21
|
913 |
+
ngram_lm_scale_1.9_attention_scale_2.3 11.22
|
914 |
+
ngram_lm_scale_2.0_attention_scale_2.5 11.23
|
915 |
+
ngram_lm_scale_0.9_attention_scale_0.3 11.25
|
916 |
+
ngram_lm_scale_1.3_attention_scale_1.0 11.26
|
917 |
+
ngram_lm_scale_0.7_attention_scale_0.01 11.27
|
918 |
+
ngram_lm_scale_1.9_attention_scale_2.2 11.27
|
919 |
+
ngram_lm_scale_1.1_attention_scale_0.6 11.29
|
920 |
+
ngram_lm_scale_2.3_attention_scale_3.0 11.31
|
921 |
+
ngram_lm_scale_1.7_attention_scale_1.7 11.33
|
922 |
+
ngram_lm_scale_1.5_attention_scale_1.3 11.34
|
923 |
+
ngram_lm_scale_1.9_attention_scale_2.1 11.34
|
924 |
+
ngram_lm_scale_2.0_attention_scale_2.3 11.34
|
925 |
+
ngram_lm_scale_2.1_attention_scale_2.5 11.35
|
926 |
+
ngram_lm_scale_1.3_attention_scale_0.9 11.36
|
927 |
+
ngram_lm_scale_1.2_attention_scale_0.7 11.39
|
928 |
+
ngram_lm_scale_1.9_attention_scale_2.0 11.4
|
929 |
+
ngram_lm_scale_2.0_attention_scale_2.2 11.4
|
930 |
+
ngram_lm_scale_1.5_attention_scale_1.2 11.43
|
931 |
+
ngram_lm_scale_1.1_attention_scale_0.5 11.44
|
932 |
+
ngram_lm_scale_2.0_attention_scale_2.1 11.47
|
933 |
+
ngram_lm_scale_2.1_attention_scale_2.3 11.47
|
934 |
+
ngram_lm_scale_2.2_attention_scale_2.5 11.47
|
935 |
+
ngram_lm_scale_1.9_attention_scale_1.9 11.48
|
936 |
+
ngram_lm_scale_1.7_attention_scale_1.5 11.5
|
937 |
+
ngram_lm_scale_2.5_attention_scale_3.0 11.51
|
938 |
+
ngram_lm_scale_3.0_attention_scale_4.0 11.51
|
939 |
+
ngram_lm_scale_1.0_attention_scale_0.3 11.53
|
940 |
+
ngram_lm_scale_1.2_attention_scale_0.6 11.53
|
941 |
+
ngram_lm_scale_1.5_attention_scale_1.1 11.54
|
942 |
+
ngram_lm_scale_2.1_attention_scale_2.2 11.54
|
943 |
+
ngram_lm_scale_2.0_attention_scale_2.0 11.55
|
944 |
+
ngram_lm_scale_2.3_attention_scale_2.5 11.59
|
945 |
+
ngram_lm_scale_2.2_attention_scale_2.3 11.61
|
946 |
+
ngram_lm_scale_2.1_attention_scale_2.1 11.62
|
947 |
+
ngram_lm_scale_1.3_attention_scale_0.7 11.63
|
948 |
+
ngram_lm_scale_2.0_attention_scale_1.9 11.63
|
949 |
+
ngram_lm_scale_1.9_attention_scale_1.7 11.66
|
950 |
+
ngram_lm_scale_1.5_attention_scale_1.0 11.67
|
951 |
+
ngram_lm_scale_2.2_attention_scale_2.2 11.69
|
952 |
+
ngram_lm_scale_0.9_attention_scale_0.1 11.7
|
953 |
+
ngram_lm_scale_2.1_attention_scale_2.0 11.71
|
954 |
+
ngram_lm_scale_1.2_attention_scale_0.5 11.72
|
955 |
+
ngram_lm_scale_1.7_attention_scale_1.3 11.72
|
956 |
+
ngram_lm_scale_2.3_attention_scale_2.3 11.75
|
957 |
+
ngram_lm_scale_0.9_attention_scale_0.08 11.77
|
958 |
+
ngram_lm_scale_2.2_attention_scale_2.1 11.78
|
959 |
+
ngram_lm_scale_2.1_attention_scale_1.9 11.82
|
960 |
+
ngram_lm_scale_1.3_attention_scale_0.6 11.83
|
961 |
+
ngram_lm_scale_1.5_attention_scale_0.9 11.85
|
962 |
+
ngram_lm_scale_2.0_attention_scale_1.7 11.85
|
963 |
+
ngram_lm_scale_2.3_attention_scale_2.2 11.86
|
964 |
+
ngram_lm_scale_0.9_attention_scale_0.05 11.87
|
965 |
+
ngram_lm_scale_1.1_attention_scale_0.3 11.87
|
966 |
+
ngram_lm_scale_1.7_attention_scale_1.2 11.88
|
967 |
+
ngram_lm_scale_1.9_attention_scale_1.5 11.9
|
968 |
+
ngram_lm_scale_2.2_attention_scale_2.0 11.9
|
969 |
+
ngram_lm_scale_2.5_attention_scale_2.5 11.9
|
970 |
+
ngram_lm_scale_4.0_attention_scale_5.0 11.93
|
971 |
+
ngram_lm_scale_2.3_attention_scale_2.1 11.97
|
972 |
+
ngram_lm_scale_0.9_attention_scale_0.01 12.0
|
973 |
+
ngram_lm_scale_2.2_attention_scale_1.9 12.02
|
974 |
+
ngram_lm_scale_1.7_attention_scale_1.1 12.05
|
975 |
+
ngram_lm_scale_1.3_attention_scale_0.5 12.07
|
976 |
+
ngram_lm_scale_2.1_attention_scale_1.7 12.07
|
977 |
+
ngram_lm_scale_2.3_attention_scale_2.0 12.09
|
978 |
+
ngram_lm_scale_1.0_attention_scale_0.1 12.11
|
979 |
+
ngram_lm_scale_2.5_attention_scale_2.3 12.11
|
980 |
+
ngram_lm_scale_2.0_attention_scale_1.5 12.14
|
981 |
+
ngram_lm_scale_1.0_attention_scale_0.08 12.19
|
982 |
+
ngram_lm_scale_3.0_attention_scale_3.0 12.19
|
983 |
+
ngram_lm_scale_1.9_attention_scale_1.3 12.22
|
984 |
+
ngram_lm_scale_1.7_attention_scale_1.0 12.23
|
985 |
+
ngram_lm_scale_2.3_attention_scale_1.9 12.23
|
986 |
+
ngram_lm_scale_2.5_attention_scale_2.2 12.23
|
987 |
+
ngram_lm_scale_1.5_attention_scale_0.7 12.27
|
988 |
+
ngram_lm_scale_1.2_attention_scale_0.3 12.28
|
989 |
+
ngram_lm_scale_2.2_attention_scale_1.7 12.3
|
990 |
+
ngram_lm_scale_1.0_attention_scale_0.05 12.32
|
991 |
+
ngram_lm_scale_2.5_attention_scale_2.1 12.37
|
992 |
+
ngram_lm_scale_2.1_attention_scale_1.5 12.39
|
993 |
+
ngram_lm_scale_1.9_attention_scale_1.2 12.41
|
994 |
+
ngram_lm_scale_1.7_attention_scale_0.9 12.46
|
995 |
+
ngram_lm_scale_1.0_attention_scale_0.01 12.49
|
996 |
+
ngram_lm_scale_2.0_attention_scale_1.3 12.5
|
997 |
+
ngram_lm_scale_2.5_attention_scale_2.0 12.51
|
998 |
+
ngram_lm_scale_2.3_attention_scale_1.7 12.54
|
999 |
+
ngram_lm_scale_1.5_attention_scale_0.6 12.55
|
1000 |
+
ngram_lm_scale_1.1_attention_scale_0.1 12.58
|
1001 |
+
ngram_lm_scale_1.9_attention_scale_1.1 12.62
|
1002 |
+
ngram_lm_scale_2.2_attention_scale_1.5 12.64
|
1003 |
+
ngram_lm_scale_1.1_attention_scale_0.08 12.67
|
1004 |
+
ngram_lm_scale_2.5_attention_scale_1.9 12.67
|
1005 |
+
ngram_lm_scale_4.0_attention_scale_4.0 12.67
|
1006 |
+
ngram_lm_scale_1.3_attention_scale_0.3 12.71
|
1007 |
+
ngram_lm_scale_2.0_attention_scale_1.2 12.71
|
1008 |
+
ngram_lm_scale_2.1_attention_scale_1.3 12.78
|
1009 |
+
ngram_lm_scale_3.0_attention_scale_2.5 12.8
|
1010 |
+
ngram_lm_scale_1.1_attention_scale_0.05 12.81
|
1011 |
+
ngram_lm_scale_1.9_attention_scale_1.0 12.85
|
1012 |
+
ngram_lm_scale_1.5_attention_scale_0.5 12.86
|
1013 |
+
ngram_lm_scale_2.3_attention_scale_1.5 12.91
|
1014 |
+
ngram_lm_scale_2.0_attention_scale_1.1 12.92
|
1015 |
+
ngram_lm_scale_1.7_attention_scale_0.7 12.99
|
1016 |
+
ngram_lm_scale_2.1_attention_scale_1.2 12.99
|
1017 |
+
ngram_lm_scale_5.0_attention_scale_5.0 13.01
|
1018 |
+
ngram_lm_scale_1.1_attention_scale_0.01 13.02
|
1019 |
+
ngram_lm_scale_2.5_attention_scale_1.7 13.02
|
1020 |
+
ngram_lm_scale_2.2_attention_scale_1.3 13.05
|
1021 |
+
ngram_lm_scale_3.0_attention_scale_2.3 13.09
|
1022 |
+
ngram_lm_scale_1.2_attention_scale_0.1 13.1
|
1023 |
+
ngram_lm_scale_1.9_attention_scale_0.9 13.11
|
1024 |
+
ngram_lm_scale_2.0_attention_scale_1.0 13.17
|
1025 |
+
ngram_lm_scale_1.2_attention_scale_0.08 13.2
|
1026 |
+
ngram_lm_scale_2.1_attention_scale_1.1 13.22
|
1027 |
+
ngram_lm_scale_3.0_attention_scale_2.2 13.24
|
1028 |
+
ngram_lm_scale_2.2_attention_scale_1.2 13.28
|
1029 |
+
ngram_lm_scale_1.7_attention_scale_0.6 13.33
|
1030 |
+
ngram_lm_scale_2.3_attention_scale_1.3 13.34
|
1031 |
+
ngram_lm_scale_1.2_attention_scale_0.05 13.36
|
1032 |
+
ngram_lm_scale_3.0_attention_scale_2.1 13.42
|
1033 |
+
ngram_lm_scale_2.5_attention_scale_1.5 13.43
|
1034 |
+
ngram_lm_scale_2.0_attention_scale_0.9 13.48
|
1035 |
+
ngram_lm_scale_2.1_attention_scale_1.0 13.51
|
1036 |
+
ngram_lm_scale_2.2_attention_scale_1.1 13.56
|
1037 |
+
ngram_lm_scale_1.2_attention_scale_0.01 13.6
|
1038 |
+
ngram_lm_scale_2.3_attention_scale_1.2 13.6
|
1039 |
+
ngram_lm_scale_3.0_attention_scale_2.0 13.62
|
1040 |
+
ngram_lm_scale_1.3_attention_scale_0.1 13.65
|
1041 |
+
ngram_lm_scale_1.5_attention_scale_0.3 13.68
|
1042 |
+
ngram_lm_scale_1.7_attention_scale_0.5 13.72
|
1043 |
+
ngram_lm_scale_1.3_attention_scale_0.08 13.76
|
1044 |
+
ngram_lm_scale_1.9_attention_scale_0.7 13.78
|
1045 |
+
ngram_lm_scale_3.0_attention_scale_1.9 13.81
|
1046 |
+
ngram_lm_scale_2.1_attention_scale_0.9 13.82
|
1047 |
+
ngram_lm_scale_2.2_attention_scale_1.0 13.85
|
1048 |
+
ngram_lm_scale_4.0_attention_scale_3.0 13.85
|
1049 |
+
ngram_lm_scale_2.3_attention_scale_1.1 13.89
|
1050 |
+
ngram_lm_scale_1.3_attention_scale_0.05 13.94
|
1051 |
+
ngram_lm_scale_2.5_attention_scale_1.3 13.94
|
1052 |
+
ngram_lm_scale_5.0_attention_scale_4.0 13.97
|
1053 |
+
ngram_lm_scale_1.9_attention_scale_0.6 14.15
|
1054 |
+
ngram_lm_scale_2.0_attention_scale_0.7 14.16
|
1055 |
+
ngram_lm_scale_2.2_attention_scale_0.9 14.17
|
1056 |
+
ngram_lm_scale_2.3_attention_scale_1.0 14.19
|
1057 |
+
ngram_lm_scale_1.3_attention_scale_0.01 14.2
|
1058 |
+
ngram_lm_scale_2.5_attention_scale_1.2 14.2
|
1059 |
+
ngram_lm_scale_3.0_attention_scale_1.7 14.26
|
1060 |
+
ngram_lm_scale_2.5_attention_scale_1.1 14.48
|
1061 |
+
ngram_lm_scale_2.3_attention_scale_0.9 14.5
|
1062 |
+
ngram_lm_scale_2.1_attention_scale_0.7 14.53
|
1063 |
+
ngram_lm_scale_2.0_attention_scale_0.6 14.54
|
1064 |
+
ngram_lm_scale_1.9_attention_scale_0.5 14.57
|
1065 |
+
ngram_lm_scale_4.0_attention_scale_2.5 14.63
|
1066 |
+
ngram_lm_scale_1.7_attention_scale_0.3 14.64
|
1067 |
+
ngram_lm_scale_3.0_attention_scale_1.5 14.71
|
1068 |
+
ngram_lm_scale_1.5_attention_scale_0.1 14.75
|
1069 |
+
ngram_lm_scale_2.5_attention_scale_1.0 14.79
|
1070 |
+
ngram_lm_scale_2.2_attention_scale_0.7 14.86
|
1071 |
+
ngram_lm_scale_1.5_attention_scale_0.08 14.87
|
1072 |
+
ngram_lm_scale_2.1_attention_scale_0.6 14.91
|
1073 |
+
ngram_lm_scale_2.0_attention_scale_0.5 14.95
|
1074 |
+
ngram_lm_scale_4.0_attention_scale_2.3 14.98
|
1075 |
+
ngram_lm_scale_1.5_attention_scale_0.05 15.05
|
1076 |
+
ngram_lm_scale_2.5_attention_scale_0.9 15.12
|
1077 |
+
ngram_lm_scale_4.0_attention_scale_2.2 15.17
|
1078 |
+
ngram_lm_scale_2.3_attention_scale_0.7 15.21
|
1079 |
+
ngram_lm_scale_3.0_attention_scale_1.3 15.22
|
1080 |
+
ngram_lm_scale_2.2_attention_scale_0.6 15.27
|
1081 |
+
ngram_lm_scale_1.5_attention_scale_0.01 15.3
|
1082 |
+
ngram_lm_scale_5.0_attention_scale_3.0 15.32
|
1083 |
+
ngram_lm_scale_2.1_attention_scale_0.5 15.33
|
1084 |
+
ngram_lm_scale_4.0_attention_scale_2.1 15.37
|
1085 |
+
ngram_lm_scale_1.9_attention_scale_0.3 15.5
|
1086 |
+
ngram_lm_scale_3.0_attention_scale_1.2 15.51
|
1087 |
+
ngram_lm_scale_4.0_attention_scale_2.0 15.57
|
1088 |
+
ngram_lm_scale_2.3_attention_scale_0.6 15.61
|
1089 |
+
ngram_lm_scale_2.2_attention_scale_0.5 15.68
|
1090 |
+
ngram_lm_scale_1.7_attention_scale_0.1 15.72
|
1091 |
+
ngram_lm_scale_4.0_attention_scale_1.9 15.79
|
1092 |
+
ngram_lm_scale_3.0_attention_scale_1.1 15.82
|
1093 |
+
ngram_lm_scale_1.7_attention_scale_0.08 15.83
|
1094 |
+
ngram_lm_scale_2.5_attention_scale_0.7 15.85
|
1095 |
+
ngram_lm_scale_2.0_attention_scale_0.3 15.87
|
1096 |
+
ngram_lm_scale_2.3_attention_scale_0.5 16.0
|
1097 |
+
ngram_lm_scale_1.7_attention_scale_0.05 16.01
|
1098 |
+
ngram_lm_scale_3.0_attention_scale_1.0 16.11
|
1099 |
+
ngram_lm_scale_5.0_attention_scale_2.5 16.12
|
1100 |
+
ngram_lm_scale_2.5_attention_scale_0.6 16.19
|
1101 |
+
ngram_lm_scale_2.1_attention_scale_0.3 16.2
|
1102 |
+
ngram_lm_scale_4.0_attention_scale_1.7 16.22
|
1103 |
+
ngram_lm_scale_1.7_attention_scale_0.01 16.23
|
1104 |
+
ngram_lm_scale_3.0_attention_scale_0.9 16.4
|
1105 |
+
ngram_lm_scale_5.0_attention_scale_2.3 16.44
|
1106 |
+
ngram_lm_scale_1.9_attention_scale_0.1 16.5
|
1107 |
+
ngram_lm_scale_2.2_attention_scale_0.3 16.53
|
1108 |
+
ngram_lm_scale_2.5_attention_scale_0.5 16.54
|
1109 |
+
ngram_lm_scale_1.9_attention_scale_0.08 16.6
|
1110 |
+
ngram_lm_scale_5.0_attention_scale_2.2 16.6
|
1111 |
+
ngram_lm_scale_4.0_attention_scale_1.5 16.63
|
1112 |
+
ngram_lm_scale_1.9_attention_scale_0.05 16.74
|
1113 |
+
ngram_lm_scale_5.0_attention_scale_2.1 16.77
|
1114 |
+
ngram_lm_scale_2.3_attention_scale_0.3 16.81
|
1115 |
+
ngram_lm_scale_2.0_attention_scale_0.1 16.83
|
1116 |
+
ngram_lm_scale_2.0_attention_scale_0.08 16.92
|
1117 |
+
ngram_lm_scale_5.0_attention_scale_2.0 16.94
|
1118 |
+
ngram_lm_scale_1.9_attention_scale_0.01 16.95
|
1119 |
+
ngram_lm_scale_3.0_attention_scale_0.7 16.96
|
1120 |
+
ngram_lm_scale_2.0_attention_scale_0.05 17.05
|
1121 |
+
ngram_lm_scale_4.0_attention_scale_1.3 17.05
|
1122 |
+
ngram_lm_scale_2.1_attention_scale_0.1 17.11
|
1123 |
+
ngram_lm_scale_5.0_attention_scale_1.9 17.11
|
1124 |
+
ngram_lm_scale_2.1_attention_scale_0.08 17.21
|
1125 |
+
ngram_lm_scale_2.0_attention_scale_0.01 17.24
|
1126 |
+
ngram_lm_scale_3.0_attention_scale_0.6 17.26
|
1127 |
+
ngram_lm_scale_4.0_attention_scale_1.2 17.27
|
1128 |
+
ngram_lm_scale_2.5_attention_scale_0.3 17.28
|
1129 |
+
ngram_lm_scale_2.1_attention_scale_0.05 17.34
|
1130 |
+
ngram_lm_scale_2.2_attention_scale_0.1 17.38
|
1131 |
+
ngram_lm_scale_5.0_attention_scale_1.7 17.44
|
1132 |
+
ngram_lm_scale_2.2_attention_scale_0.08 17.46
|
1133 |
+
ngram_lm_scale_4.0_attention_scale_1.1 17.5
|
1134 |
+
ngram_lm_scale_2.1_attention_scale_0.01 17.52
|
1135 |
+
ngram_lm_scale_3.0_attention_scale_0.5 17.57
|
1136 |
+
ngram_lm_scale_2.2_attention_scale_0.05 17.59
|
1137 |
+
ngram_lm_scale_2.3_attention_scale_0.1 17.62
|
1138 |
+
ngram_lm_scale_2.3_attention_scale_0.08 17.7
|
1139 |
+
ngram_lm_scale_4.0_attention_scale_1.0 17.72
|
1140 |
+
ngram_lm_scale_2.2_attention_scale_0.01 17.76
|
1141 |
+
ngram_lm_scale_5.0_attention_scale_1.5 17.8
|
1142 |
+
ngram_lm_scale_2.3_attention_scale_0.05 17.82
|
1143 |
+
ngram_lm_scale_4.0_attention_scale_0.9 17.94
|
1144 |
+
ngram_lm_scale_2.3_attention_scale_0.01 17.98
|
1145 |
+
ngram_lm_scale_2.5_attention_scale_0.1 18.03
|
1146 |
+
ngram_lm_scale_2.5_attention_scale_0.08 18.1
|
1147 |
+
ngram_lm_scale_5.0_attention_scale_1.3 18.12
|
1148 |
+
ngram_lm_scale_3.0_attention_scale_0.3 18.17
|
1149 |
+
ngram_lm_scale_2.5_attention_scale_0.05 18.2
|
1150 |
+
ngram_lm_scale_5.0_attention_scale_1.2 18.29
|
1151 |
+
ngram_lm_scale_2.5_attention_scale_0.01 18.33
|
1152 |
+
ngram_lm_scale_4.0_attention_scale_0.7 18.36
|
1153 |
+
ngram_lm_scale_5.0_attention_scale_1.1 18.48
|
1154 |
+
ngram_lm_scale_4.0_attention_scale_0.6 18.58
|
1155 |
+
ngram_lm_scale_5.0_attention_scale_1.0 18.65
|
1156 |
+
ngram_lm_scale_3.0_attention_scale_0.1 18.75
|
1157 |
+
ngram_lm_scale_4.0_attention_scale_0.5 18.79
|
1158 |
+
ngram_lm_scale_3.0_attention_scale_0.08 18.81
|
1159 |
+
ngram_lm_scale_5.0_attention_scale_0.9 18.81
|
1160 |
+
ngram_lm_scale_3.0_attention_scale_0.05 18.89
|
1161 |
+
ngram_lm_scale_3.0_attention_scale_0.01 18.99
|
1162 |
+
ngram_lm_scale_5.0_attention_scale_0.7 19.11
|
1163 |
+
ngram_lm_scale_4.0_attention_scale_0.3 19.18
|
1164 |
+
ngram_lm_scale_5.0_attention_scale_0.6 19.25
|
1165 |
+
ngram_lm_scale_5.0_attention_scale_0.5 19.41
|
1166 |
+
ngram_lm_scale_4.0_attention_scale_0.1 19.57
|
1167 |
+
ngram_lm_scale_4.0_attention_scale_0.08 19.61
|
1168 |
+
ngram_lm_scale_4.0_attention_scale_0.05 19.67
|
1169 |
+
ngram_lm_scale_5.0_attention_scale_0.3 19.71
|
1170 |
+
ngram_lm_scale_4.0_attention_scale_0.01 19.73
|
1171 |
+
ngram_lm_scale_5.0_attention_scale_0.1 19.99
|
1172 |
+
ngram_lm_scale_5.0_attention_scale_0.08 20.01
|
1173 |
+
ngram_lm_scale_5.0_attention_scale_0.05 20.05
|
1174 |
+
ngram_lm_scale_5.0_attention_scale_0.01 20.11
|
1175 |
+
|
1176 |
+
2022-04-09 04:57:33,455 INFO [decode_test.py:730] Done!
|