sqrk's picture
Model save
1cd9716 verified
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Sep26-Mixat-whisper-lg-3-translation
    results: []

Sep26-Mixat-whisper-lg-3-translation

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7932
  • Wer: 42.6353

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.8768 0.4292 100 0.4849 38.3799
0.5884 0.8584 200 0.4886 37.6625
0.4802 1.2876 300 0.4899 42.7189
0.4519 1.7167 400 0.5002 42.3724
0.4173 2.1459 500 0.5083 43.9228
0.3271 2.5751 600 0.5200 41.2447
0.3292 3.0043 700 0.5020 41.7533
0.1963 3.4335 800 0.5670 43.8933
0.2076 3.8627 900 0.5536 42.9842
0.1413 4.2918 1000 0.5866 42.1439
0.1194 4.7210 1100 0.6091 43.5739
0.0994 5.1502 1200 0.6991 42.6722
0.067 5.5794 1300 0.6573 44.6869
0.0699 6.0086 1400 0.6579 44.4363
0.0386 6.4378 1500 0.7268 46.2249
0.0414 6.8670 1600 0.7219 44.3527
0.0334 7.2961 1700 0.7521 45.5763
0.0308 7.7253 1800 0.7932 42.6353

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1