--- license: apache-2.0 language: en tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilroberta-base-squad_v2 results: - task: name: Question Answering type: question-answering dataset: type: squad_v2 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: The Stanford Question Answering Dataset args: en metrics: - type: eval_exact value: 65.2405 - type: eval_f1 value: 68.6265 - type: eval_HasAns_exact value: 67.5776 - type: eval_HasAns_f1 value: 74.3594 - type: eval_NoAns_exact value: 62.91 - type: eval_NoAns_f1 value: 62.91 --- # distilroberta-base-squad_v2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the squad_v2 dataset. ## Model description This model is fine-tuned on the extractive question answering task -- The Stanford Question Answering Dataset -- [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/). For convenience this model is prepared to be used with the frameworks `PyTorch`, `Tensorflow` and `ONNX`. ## Intended uses & limitations This model can handle mismatched question-context pairs. Make sure to specify `handle_impossible_answer=True` when using `QuestionAnsweringPipeline`. __Example usage:__ ```python >>> from transformers import AutoModelForQuestionAnswering, AutoTokenizer, QuestionAnsweringPipeline >>> model = AutoModelForQuestionAnswering.from_pretrained("squirro/distilroberta-base-squad_v2") >>> tokenizer = AutoTokenizer.from_pretrained("squirro/distilroberta-base-squad_v2") >>> qa_model = QuestionAnsweringPipeline(model, tokenizer) >>> qa_model( >>> question="What's your name?", >>> context="My name is Clara and I live in Berkeley.", >>> handle_impossible_answer=True # important! >>> ) {'score': 0.9498472809791565, 'start': 11, 'end': 16, 'answer': 'Clara'} ``` ## Training and evaluation data Training and evaluation was done on [SQuAD2.0](https://huggingface.co/datasets/squad_v2). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Metric | Value | |:-------------------------|-------------:| | epoch | 3 | | eval_HasAns_exact | 67.5776 | | eval_HasAns_f1 | 74.3594 | | eval_HasAns_total | 5928 | | eval_NoAns_exact | 62.91 | | eval_NoAns_f1 | 62.91 | | eval_NoAns_total | 5945 | | eval_best_exact | 65.2489 | | eval_best_exact_thresh | 0 | | eval_best_f1 | 68.6349 | | eval_best_f1_thresh | 0 | | eval_exact | 65.2405 | | eval_f1 | 68.6265 | | eval_samples | 12165 | | eval_total | 11873 | | train_loss | 1.40336 | | train_runtime | 1365.28 | | train_samples | 131823 | | train_samples_per_second | 289.662 | | train_steps_per_second | 0.567 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6